Skip to Navigation Skip to Content Skip to Search Skip to Site Map
Search

Early Modern Experimental Philosophy
A project of the Early Modern Thought Research Theme at the University of Otago

CFP: Bucharest Colloquium in Early Modern Science

A colloquium at the Institute for Research in the Humanities, University of Bucharest & The Center for the Logic, History and Philosophy of Science, Faculty of Philosophy, University of Bucharest:

 

CFP: Bucharest Colloquium in Early Modern Science

6th-7th November 2015

 

Invited speakers:

Daniel Garber (Princeton University)
Paul Lodge (University of Oxford)
Arianna Borrelli (Technical University, Berlin)

 

We invite papers by established and young scholars (including doctoral students) on any aspects of early modern philosophy/early modern science. Abstracts no longer than 500 words, to be sent to Doina-Cristina Rusu (dc.rusu@yahoo.com ) by September 10. Authors will be notified by September 15.

 

Contacts:

Dana Jalobeanu (dana.jalobeanu@celfis.ro) and Doina-Cristina Rusu (dc.rusu@yahoo.com ).

 

More details:

Here

 

 

Crucial Instances in the Principia

Kirsten Walsh writes…

In the General Scholium, which concluded later editions of Principia, Newton described the work as ‘experimental philosophy’:

In this experimental philosophy, propositions are deduced from phenomena and are made general by induction. The impenetrability, mobility, and impetus of bodies, and the laws of motion and the law of gravity have been found by this method.

On this blog, I have argued that we should take this statement at face value. In support, I have emphasised similarities between Newton’s work in optics and mechanics. For example, I have considered the kind of evidence provided in each work, arguing that both the Principia’s ‘phenomena’ and the Opticks’s ‘experiments’ are idealisations based on observation, and that they perform the same function: isolating explananda. I have also emphasised Newton’s preoccupation in the Principia with establishing his principles empirically. Finally, I have suggested that this concern with experimental philosophy, in combination with his use of mathematics, made Newton’s method unique.

In my last blog post, I wondered if we should regard Newton’s methodology as an extension of the Baconian experimental method, or as something more unique. I have written many blog posts discussing the Baconian aspects of Newton’s optical work (for example, here, here and here), but the Baconian aspects of the Principia are less well-established. I can identify at least three possible candidates for Baconianism in the Principia. The first, suggested by Daniel Schwartz in recent conversation, is that book 3 contains what might be interpreted as Baconian ‘crucial instances’. The second, discussed by Steffen Ducheyne, is that Newton’s argument for universal gravitation resembles Bacon’s method of induction. The third, discussed by Mary Domski, is that the mathematical method employed in the Principia should be viewed as part of the seventeenth-century Baconian tradition. In this post, I’ll focus on Schwartz’s suggestion—the possibility there is a crucial instance in book 3 of the Principia—I’ll address the rest in future posts.

To begin, what is a ‘crucial instance’? For Bacon, crucial instances (instantiae crucis) were a subset of ‘instances with special powers’ (ISPs). When constructing a Baconian natural history, ISPs were experiments, procedures, and instruments that were held to be particularly informative or illuminative of aspects of the inquiry. These served a variety of purposes. Some functioned as ‘core experiments’, introduced at the very beginning of a natural history, and serving as the basis for further experiments. Others played a role later in the process. This included experiments that were supposed to be especially representative of a certain class of experiments, tools and experimental procedures that provided interesting investigative shortcuts, and model examples that came close to providing theoretical generalisations.

Crucial instances are part of a subset of ISPs that were supposed to aid the intellect by “warning against false forms or causes”. When two possible explanations seemed equally good, then the crucial instance was employed to decide between them. To this end, it performed two functions: the negative function was to eliminate all possible explanations except the correct one; the positive function was to affirm the correct explanation.

According to Claudia Dumitru, Bacon’s crucial instances have a clear structure:

  1. Specify the explanandum;
  2. Consider the competing explanations (these are assumed to exhaust the possibilities);
  3. Derive a consequence from one explanation that is incompatible with the other explanation(s);
  4. Test that consequence.

Are there any arguments in the Principia that look like crucial instances? I think there’s at least one: Newton’s famous ‘Moon test’. Let’s have a look at it.

In proposition 4 book 3, Newton used his Moon test to establish that “The moon gravitates toward the earth and by the force of gravity is always drawn back from rectilinear motion and kept in its orbit”. Here, Newton argued that the inverse-square centripetal force, keeping the moon in orbit around the Earth, is the same force that, say, makes an apple fall to the ground, namely, gravity. I think we can tease out the features of a Baconian crucial instance from Newton’s reasoning here.

Firstly, there is an explanandum: what kind of force keeps the Moon in its orbit and prevents it from flying off into space? Secondly, two possible explanations are provided: the force is either (a) the same force that that acts on terrestrial objects, namely, gravity; or (b) a different force. Thirdly, we have a consequence of (a) that is incompatible with (b): if the moon were deprived of rectilinear motion, and allowed to fall towards Earth, it would begin falling at the rate of 15 1/12 Paris feet in the space of one minute, accelerating so that at the Earth’s surface it would fall 15 1/12 Paris feet in a second. Finally, we see a test of that consequence: the calculations based on the size and motion of the Moon, and its distance from the Earth. The results are taken to support (a) and refute (b).

I have three concluding remarks to make.

Firstly, interpreting the Moon test as a crucial instance involves ‘rational reconstruction’. In the text, Newton starts by calculating the rate at which the Moon would fall, and shows that this supports proposition 4. But I think my reading of this as a crucial instance is supported by Newton’s concluding remarks:

For if gravity were different from this force, then bodies making for the earth by both forces acting together would descend twice as fast, and in the space of one second would by falling describe 301/6 Paris feet, entirely contrary to experience.

Here, Newton described the Moon test as a crucial instance: he used an observation to choose between two competing explanations of the explanandum.

Secondly, when looking for crucial instances in the Principia, it might be tempting to start with the phenomena, listed at the beginning of book 3. Elsewhere, I have argued that these resemble Newton’s experiments in the Opticks, which function as instances with special powers. But the label ‘crucial instance’ describes the function, not the content, of an empirical claim. And so, to see if they provide crucial instances, we need to consider how the phenomena are used. In fact, I think they do provide crucial instances for Newton’s rejection of Cartesian vortex theory in favour of universal gravitation, found at the end of book 2. But again, this requires rational reconstruction.

Finally, there is the issue of historical influence. I have shown that Newton employed the Moon test to decide between two competing explanations, and that this argument resembles one of Bacon’s crucial instances. However, one might think that this was simply a good approach to empirical support, and that Newton was using his common-sense. So perhaps we shouldn’t take this to indicate (direct or indirect) influence. And so I have a question for our readers: was this style of reasoning uniquely Baconian?

 

Master-class: Isaac Newton’s Philosophical Projects

A master-class at the Institute for Research in the Humanities, University of Bucharest:

 

Isaac Newton’s Philosophical Projects

6th-11th October 2015

 

The purpose of this master-class is to discuss and to set in context some of Newton’s philosophical, scientific and theological projects. It aims to address a number of well-known (and difficult) questions in a new context, by setting them comparatively against the natural philosophical and theological background of early modern thought. By bringing together a group of experts on various aspects of Newton’s thought with experts on Descartes, Bacon and Leibniz, the master-class facilitates interdisciplinary and cross-disciplinary perspectives

The activities of the master-class will consist of lectures, reading groups and seminars, as well as more informal activities (tutorials, and discussions). The master-class will be set within the interdisciplinary environment of the Institute of Research in the Humanities, University of Bucharest. It aims to bring together 15 students (post-docs and graduate students) coming from different fields and willing to spend 5 days working together within the premises of the Institute, and under the supervision of leading experts.

 

Invited speakers:

Rob Illiffe (Sussex), Niccolo Guicciardini (Bergamo), Andrew Janiak (Duke University)

 

Organisers:

Dana Jalobeanu, Kirsten Walsh

 

To participate:

There is no participation cost, but there are limited places available.  In order to apply for the master-class send a CV and a letter of intention to Dana Jalobeanu (dana.jalobeanu@celfis.ro) by August 15, 2015. The final list of participants will be announced on the web-site of the institute by August 30, 2015. If you want to present a short paper in the master-class, please send an extended abstract (no longer than 800 words).

 

More details:

Here

 

 

 

The ESD and the Berlin Académie

Peter Anstey writes …

One good indicator of the wide dissemination of experimental philosophy in the early modern period is the extent to which it manifested itself in the institutions of the time.

The first chair in experimental philosophy was the Plumian Chair in Experimental Philosophy and Astronomy that was established at the University of Cambridge in 1707. The first incumbent of the Chair was Roger Cotes who went on to edit the second edition of Newton’s Principia. We have also mentioned Abbé Nollet before on this blog and the fact that he was appointed Professor Royale de physique expérimentale at the Collège de Navarre in Paris in 1753.

It is of great interest, therefore, to note that the important restructuring of the Académie Royale des Sciences at Belles Lettres in Berlin in the 1740s also reflected the central place that was now accorded to experimental philosophy in Europe.

PSM_V64_D531_Pierre_Louis_Moreau_de_Maupertuis

Pierre Louis Moreau de Maupertuis (Public Domain)

King Frederick II of Prussia sought to reinvigorate the institution by appointing the prominent French savant Pierre-Louis Moreau de Maupertuis as President of the Académie in 1746 and restructuring it into four classes. In the ‘Rules of the Academy’ from 1746, which are the official position of the Académie, the nature of these four classes is spelt out as follows:

The Academy will continue as it is, divided into four classes

  1. The class of Experimental Philosophy, including chemistry, anatomy, botany and all sciences that are founded on experiment.
  2. The class of Mathematics, including geometry, algebra, mechanics, astronomy and all the sciences which have as their object the abstract and numbers
  3. The class of Speculative Philosophy which will apply to logic, metaphysics and morals
  4. The class of literature will include antiquities, history and languages.

(Histoire de l’Académie Royale des Sciences et Belles Lettres, 1748, pp. 3–4)

There are a number of striking features of these classes. First, note that Experimental Philosophy is here grouped with Speculative Philosophy. It is clear that a form of experimental-speculative distinction is part and parcel of the Academicians’ conception of natural philosophy.

Second note that anatomy and botany are included in Experimental Philosophy. This is striking because it is closer to the manner in which experimental philosophy in Britain in the seventeenth century was understood in so far as it encompasses disciplines that were often regarded as part of natural history. In the mid-eighteenth century in France, by contrast, Nollet regarded physique expérimentale and natural history as distinct disciplines.

We note also that astronomy and mechanics, two sciences in which Maupertuis excelled, are grouped under Mathematics. This is in spite of the fact that they required observation and experiment. Indeed, Maupertuis’s fame rested in large part on his Lapland expedition of 1736 on which he was able to establish experimentally that the Earth is an oblate spheroid. Yet this had implications for both mechanics and astronomy.

Furthermore, it is worth highlighting that morals is considered to be a speculative science. This provides an interesting contrast to the situation in mid-eighteenth-century Scotland where there was a concerted attempt, as David Hume put it ‘to introduce the experimental method of reasoning into moral subjects’.

We can obtain a clearer sense of just what each class encompassed by examining the Histoire de l’Académie two years later. Here is how experimental philosophy is described:

Experimental Philosophy includes all natural history, all knowledge for which one has need of eyes, of hands, and of all the senses. It considers the bodies of the universe covered with all their sensible properties. It compares these properties linking them together and deducing one from another. This science is all founded on experiment. Without it reason is always in danger of falsehoods and losing itself in systems that it denies. However, experiment also has need of reason; it saves the natural philosopher time and pains; it makes him grasp all at once certain relations that deliver him of several useless operations; and it permits him to turn all his focus towards those phenomena that are decisive. (Histoire de l’Académie, 1750, p. 118)

By contrast speculative philosophy is that which ‘considers those objects that don’t have any properties of bodies. The supreme being, the human mind, and all that which belongs to the mind is the object of this science. The nature of bodies themselves, as represented by our perceptions, even if they are things other than these perceptions, they are in its remit’ (Histoire de l’Académie, 1750, p. 120).

Interestingly, speculative philosophy here is not a method that begins with hypotheses and principles and constructs natural philosophical systems. Rather it includes subject matter that is beyond the scope of natural philosophy, what we would call metaphysics. Of course, metaphysics had long been associated with speculative philosophy. Newton’s railing against metaphysics is a case in point. However, for Newton the hypothetical or speculative philosophers allowed metaphysics to intrude into their natural philosophical reasoning. Here, by contrast, speculative philosophy is clearly demarcated from the study of material bodies.

Is this indicative of a shift towards regarding speculative philosophy as pertaining to metaphysics rather than to natural philosophy in mid-eighteenth-century Europe? I would be keen to know of parallel definitions of speculative philosophy.

 

 

“Secta Empírica y Dogmáticos Racionales”: medicine and the ESD in early modern Spain

A couple of months ago Peter Anstey directed me to a book by Miguel Marcelino Boix, a Spanish doctor and professor of surgery at the Universidad de Alcalá. The book, a defense and commentary on the first aphorism of Hippocrates, was published in 1711 and it contains some references to the experimental philosophy of the time. But what really caught my eye was the use Boix makes of the terms rationalism (racionalismo) and empiricism in medicine, and the connection of the latter term to experimental philosophy. In this and a couple of future posts I want to present Boix’s text and hopefully shed some light on the connection between experimental philosophy and empiricism (and the ESD) in early modern Spain.

Vita brevis, ars longa, occasio praeceps, experimentum periculosum, iudicium difficile.

This is Hippocrates’ first aphorism, the focus of Boix’s text. The Spanish doctor gives his analysis of the five phrases of the aphorism while criticizing various other interpretations of them. It is during his account of the fourth phrase, experimentum periculosum, that Boix contrasts the two sects, rational dogmatists (dogmáticos racionales) and empirics (empíricos), and begins to connect the latter with experimental philosophy.

Boix begins by offering his interpretation of the phrase, explaining that it says that doctors “never apply any medicine to the human body with absolute certainty that the desired effect will result.” In this sense, the phrase serves as warning to doctors, both rational and empiric, to be mindful of the limits of our knowledge and experience regarding medicine. However, Boix comments, some rational dogmatists have taken the phrase to mean that “experience is dangerous and false if it is not accompanied by reason.” This interpretation is used by rational dogmatists to attack the empirics, given that they follow experience blindly without any reference to reason. But Boix believes that this description of the empiric doctors, which is popular among people, is flawed. It is this mistaken account of the empirics that leads him to explain the differences between the two sects.

Given that the rational dogmatists attack the empirics for detaching reason from experience, Boix begins by examining the reasons the former give in their accounts.

They (rational dogmatists) say that their Medicine and Philosophy is founded on the four Elements, and the four humours; look at these four columns, these four strong pillars. And so they say, that knowing that there is heat, cold, wet and dry; blood, yellow bile, phlegm and black bile, they know all the effects they want, and that solely with the knowledge of these two quartets they have enough to defeat even the toughest questions contained in Natural philosophy and all of medicine. To this they add, that they are extremely happy, that Galen and Aristotle,their Princes, one in Medicine, the other in Philosophy, knew all they could, because neither to them or their disciples, has a problem been put forward, whether Physical or Medical, that they have not been able to solve solely by knowing that there are four qualities, and four humours.

By contrast, the popular opinion of the empirics is that they focus solely on experience and never give reasons for it; they “are those tricksters or scoundrels that come from Foreign Nations with half a dozen remedies, wanting to cure all kinds of diseases with them.” But this is a false depiction of the empiric sect. In order to explain what the empiric doctors are really about, Boix refers to the main sects in natural philosophy: sceptics, academics, and rational dogmatists. But we will get into that in my next post. I want to stop here to talk about the popular concept of the empiric doctors and the connection with experimental philosophy.

As Alberto Vanzo pointed out in a previous post, “experimental physicians” saw themselves as opponents of “empirical physicians.” But the text by Boix brings in a new scenario for our consideration. It seems that in Spain, rather than seeing themselves as opponents of the empirical physicians, experimental physicians felt that were indeed part of the empiric sect and opposed the rational dogmatists. However, the position of the Spanish doctors is not different from that of the physicians described by Alberto in his post. When doctors like John Gregory and Friederich Hoffman described themselves as opponents of the empirical physicians, they had in mind the popular concept of empiric that Boix points out in his text. The Spanish doctors, just like their Scottish and German counterparts, saw themselves as opponents of that specific kind of physician. The difference lies in the fact that Spanish physicians believed that the true empirical physicians were far from the popular depiction of empirics. In fact, the way they described the true empirical doctors is very similar to that of Gregory and Hoffman regarding experimental physicians. It is this description of the empiric sect that we will turn to in my next post.

 

 

Huygens and Newton

Kirsten Walsh writes…

In a previous post, I noted that, unlike other members of the Royal Society, Newton saw a role for mathematical reasoning in experimental philosophy. In many ways, it was this mathematical approach that distinguished his methodology from the Baconian experimental philosophy, adopted by Boyle and Hooke.  Given this distinctive mathematical bent, one might be tempted to suggest that Newton’s approach has far more in common with that of mathematicians such as Huygens, than with experimental philosophers such as Boyle and Hooke. (Indeed, Eric Schliesser argues for this position here.) In today’s post, I’ll examine this claim. First I’ll look at Huygens’ and Newton’s mechanics, then I’ll broaden the scope to consider their optical work as well.

Let’s begin by comparing Huygens’ Horologium Oscillatorium (or, the Pendulum Clock) with Newton’s Principia. The Horologium and the Principia are generally regarded as two of the three most important seventeenth-century works on mechanics (the third being Galileo’s Two New Sciences). We know that Newton read, and very much approved of, Huygens’ Horologium well before he began work on his Principia. So it is an obvious source of inspiration and influence for Newton’s work. Moreover, there are important similarities between them. Most obviously, they share fundamental assumptions and content, including axioms regarding motion, analyses of pendulum motion and theories of curves. Furthermore, each work, to some extent, re-derives Galileo’s work on mechanics. But the similarity runs deeper. Firstly, both works display a marked preference for classical-geometrical inference strategies. For one thing, they both exploit the axiomatic structure of geometry as a model of logical rigour. And for another, they employ geometrical diagrams to demonstrate propositions. Secondly, both works draw on experiment (for example, pendulum experiments) to establish the explananda.

Another similarity between the two works is that both authors remain agnostic with regard to the mechanism or cause of gravity. Newton’s (in)famous phrase, Hypotheses non fingo, is a declaration of this. And in part II of the Horologium, Huygens’ second hypothesis begins, “By the action of gravity, whatever its sources…” (my emphasis). On the face of it, this is a feature that unites them. But, despite appearances, it is at this point that they come apart.

After its publication, Huygens criticised the Principia for appearing to support action at a distance. Huygens was committed to the mechanical philosophy and, as far as he was concerned, Newton’s account of gravity couldn’t be given a mechanical explanation. Newton was not swayed. The fact that his account seemed to support an unsavoury metaphysical commitment did not deter him from appreciating its empirical success. In the preface to book 3 of the Principia, Newton wrote that he was wary of its inclusion, since

“…those who have not sufficiently grasped the principles set down here will certainly not perceive the force of the conclusions, nor will they lay aside the preconceptions to which they have become accustomed over many years…” (my emphasis).

Huygens did exactly what Newton was afraid of: he allowed his mechanical preconceptions to prevent him from appreciating “the force of the conclusions”.*  As far as Newton was concerned, “it is enough that gravity really exists and acts according to the laws that we have set forth”. (And in the final paragraph of the Principia we see that Newton hoped to conceive of gravity as a spirit or vapour—he had not given up on the possibility of a local-action explanation. However, he wasn’t willing to sacrifice the rigour of his account in order to provide one.)

And so, one difference between Newton and Huygens lies in their commitment to mechanical philosophy. Where, for Huygens, the ability to give mechanical explanations—appealing to the shape, size, motion and texture of corporeal bodies—is a requirement of natural philosophy, Newton sees this as a needless restriction. Although Huygens’ commitment to the mechanical philosophy aligns him closely with Boyle and other early members of the Royal Society, the mechanical philosophy and the experimental philosophy were distinct. Arguably, Newton’s decoupling of experimental and mechanistic philosophy is one thing that sets him apart from both the early Royal Society and Huygens.

Another difference between Newton and Huygens is revealed when we broaden the scope to consider their optical work as well. Newton, following Isaac Barrow, thought that there was a place for mathematical reasoning in optics and natural philosophy more generally. In mathematics, one can reason deductively from axioms to propositions, without epistemic loss. So too, Newton thought, one can reason in natural philosophy. And so, by starting with experimentally established axioms (or laws), one could reason deductively to propositions, without epistemic loss. In this way, Newton conceived of a ‘science of optics’, grounded in experiment and observation, and inferred via mathematical reasoning. In contrast, Huygens thought that optics required a very different approach than mechanics. Where, in mechanics, it was possible to reason mathematically, without epistemic loss; Huygens thought that the hypothetico-deductive method was more appropriate for optics.

In brief, Newton took his theoretical claims in optics to be certain, as they were (1) mathematically derived from axioms, which were (2) established by careful experiment. Huygens, like the early Royal Society, held that certainty is out of our reach, so the best we can hope to achieve is a high degree of probability. Here we see one way in which Newton diverges from the Baconian experimental philosophy. He distanced himself from the probabilism of the Baconian experimental philosophers—and Huygens.

Here we have seen that there are indeed striking similarities between Huygens’ Horologium and Newton’s Principia. But, if we want to understand their methodological outlooks, we may learn more by considering the differences. The points of disagreement between Huygens and Newton allows us to identify two very different methodological approaches. Huygens was undoubtedly a strong influence on Newton. As were Descartes, Barrow and Hooke—not to mention his early reading of Aristotelian textbooks, his later interest in Pappus, and the many contemporary works of logic and natural philosophy! Despite these influences, or perhaps because of them, the methodology ultimately developed and exemplified by Newton was utterly original. In a nutshell, he saw mathematical deductive inference as compatible with the observations and experiments of Baconian natural history.  In combining these, he forged a new method of experimental philosophy, which eventually superseded Baconian experimental philosophy.

And so, what was Newton’s relationship with the mathematicians? Well, Newton actively engaged with their methodological approaches, and took a lot from them. Just as he did with the experimental philosophers of the early Royal Society.  How distinctive was Newton’s approach?  Mary Domski has argued that the methodology of the Principia should be viewed as a natural extension of the Baconian experimental philosophy – and that this was recognised by Locke.  In my next post, I’ll examine this idea and try to nail down just what was original about Newton’s methodology.

 

* Incidentally, here I offer a different reading of this passage to the one offered by Eric Schliesser. Where Schliesser argues that Newton was rejecting “a whole package of practices that are (implicitly) captured by the ESD”, I argue that Newton was rejecting the mechanical philosophy. (On the historiography of the mechanical philosophy, including some thoughts on the relationship between the experimental philosophy and the mechanical philosophy, see Peter Anstey’s recent essay review.  He has also posted on the topic here and here.)

Experimental Philosophy and Mechanical Philosophy II: The Case of Robert Boyle

Peter Anstey writes …

What is the precise relation between experimental philosophy and mechanical philosophy in the seventeenth century? In my last post I showed how neither Henry More nor Henry Stubbe were particularly clear about this. In this post I examine the view of Robert Boyle.

Boyle is sometimes credited with coining the English term ‘mechanical philosophy’* and he was certainly the first person to use the term ‘experimental philosophy’ in a book title. In 1663 he published Of the Usefulness of Experimental Philosophy which was soon followed by Henry Power’s Experimental Philosophy of 1664.

If we look at frequencies of use in Boyle’s writings, it turns out that he used the term ‘experimental philosophy’ roughly twice as often as ‘mechanical philosophy’ or ‘mechanical hypothesis’. This raw fact is in itself rather telling for those recent historiographical debates over the nature and status of mechanical philosophy in early modern philosophy that almost entirely ignore experimental philosophy. However, the key question is: Were the terms synonyms for Boyle or did they denote two different things?

The best early statement of Boyle’s view of the content of experimental philosophy is in the ‘Proemial Essay’ to Certain Physiological Essays first published in 1661. He starts with a criticism of previous natural philosophers such as Aristotle and Campanella:

they have too hastily, and either upon a few Observations, or at least without a competent number of Experiments, presum’d to establish Principles, and deliver Axioms. (Works of Robert Boyle, 1999–2000, 2: 13)

What experimental philosophers should do instead is:

set themselves diligently and industriously to make Experiments and collect Observations, without being over-forward to establish Principles and Axioms, believing it uneasie to erect such Theories as are capable to explicate all the Phaenomena of Nature, before they have been able to take notice of the tenth part of those Phaenomena that are to be explicated. (Works of Robert Boyle, 2: 14)

This clearly has to do with the role of observation and experiment in relation to theory in the acquisition of knowledge about nature. Now let’s see how Boyle defines the mechanical philosophy. In The Excellency and Grounds of the Mechanical Hypothesis (aka the mechanical or corpuscular philosophy) Boyle states the kernel of the view as follows:

the Universe being once fram’d by God, and the Laws of Motion being setled and all upheld by His incessant concourse and general Providence; the Phænomena of the World  thus constituted, are Physically produc’d by the Mechanical affections of the parts of Matter, and what they operate upon one another according to Mechanical Laws. (Boyle Works, 8: 104)

The mechanical affections referred to here are the shape, size, motion and texture of corporeal bodies.

Now this is really quite different from experimental philosophy. For, it is the sort of theory that one should arrive at as a result of practising experimental philosophy. This is why Boyle’s book The Origin of Forms and Qualities has a ‘speculative part’, which outlines the theoretical content of the mechanical philosophy, and a ‘historical (or experimental) part’, which provides experimental support for the speculative theory. Here is how he describes the relation between the two parts:

it was very much wish’d, that the Doctrines of the new Philosophy (as tis call’d) [i.e. mechanical philosophy] were back’d by particular Experiments; the want of which I have endeavour’d to supply, by annexing some, whose Nature and Novelty I am made believe will render them as well Acceptable as Instructive.

Thus, for Boyle, experimental philosophy and mechanical philosophy are entirely distinct: the former provides the evidential grounds of the latter. This is why, as Dmitri Levitin has shown, Boyle prefers Democritus to Epicurus. In Boyle’s view, the former based his atomism on experimental philosophy, the latter on speculative philosophy. (Levitin, ‘The experimentalist as humanist: Robert Boyle on the history of philosophy’, Annals of Science, 71, 2014, 149–82).

It may be that some philosophers and even natural philosophers conflated experimental philosophy with mechanical philosophy, but in Boyle’s mind they were distinct.

 

* Actually, the question turns out to be slightly more complicated than it looks because Henry More used the term ‘mechanical hypothesis’ in 1653 (An Antidote against Atheism, 44) and when Boyle first introduces the term in 1661 in Certain Physiological Essays, he uses ‘Mechanical Hypothesis or Philosophy’ (Boyle Works, 2: 87).

 

Astrology and the novatores, part 3

Juan Gomez writes…

This is the final post on my first series on the debate between scholastics and novatores in early modern Spain. In the first post of the series I introduced two figures who had a heated debate concerning the status of astrology: Martin Martinez representing the novatores, and Diego de Torres Villaroel defending the scholastics. We saw that Martinez calls for a ban on astrology on methodological grounds. He criticizes those scholastics (specifically Villaroel) who rely on astrology for writing only from their imagination with no regard for observation and experiment.

In the second post of the series we looked at Martinez’s arguments in more detail. We focused on his rejection of the application of astrology in natural philosophy. His attack revolves around the claim that the astrologers explain natural phenomena by referring to obscure causes where the phenomena in question are clearly accounted for by referring to evident causes. He shows that in medicine and natural philosophy there is no need to consult the stars.  Villaroel was offended by this attack on astrology and promptly published his reply, Entierro del Juicio Final, y vivificacion de la astrologia (Burial of the Final Judgment, and revitalization of astrology).  Juicio Final was the title of Martinez’s attack, and in today’s post we will examine Villaroel’s attempt to bury it.

Villaroel sets out to respond to Martinez’s criticisms and show that astrology in fact is useful for our natural, moral, and political inquiries.  We saw Martinez complain about the practice of placing celestial bodies as the causes of natural effects, in particular when it comes to explaining the ailments of the human body. Surprisingly, Villaroel responds to this criticism by saying that these are not mere conjectures, but are actually founded on observation and experience:

That Astrologers assign to each body part its Planet, or its star Sign, is not as dissonant as the Doctor [Martinez] judges; since in fact the analogy and conformity between the temper of the planets, and the cold, dry, wet, and warm parts of the wind, are such qualities not by the devotion of Astrologers, nor by their words, but because God made them that way, giving each its temper and quality: observation and experience, the mother of knowledge (which Martin lacks), has taught us so, as it taught our Masters; if not, let’s ask the Doctor: why is chicory cold? I believe he will answer, because God made it so, and gave it such quality. And I would ask further: has God told you which quality it has? No sir, he will answer (he is not so holy as to have revelations), experience has taught it to me and so have all Medical Authors. Well we astrologers say the same about the qualities of the Planets and Stars.

Despite Villaroel’s insistence that it is through experience and observation that astrologers know the qualities of the planets and their effect on the human body, there is no reference at all to an observation account to support the claim. Instead, Villaroel blames Martinez for not properly studying the work of the authors cited by astrologers (traditional scholastic figures, such as Aquinas and Galen), and so his ignorance leads him to his unfounded criticism.

In fact, it is this ignorance, Villaroel claims, that leads Martinez to think that astrologers refer to occult causes to explain natural phenomena:

I encountered then a Cartesian rascal, who told me with a hollow cough while stroking his beard: those influences you confer to the Stars are either occult qualities, which means you do not know if they exist, or they are evident qualities, and if so you are mistaken in not pointing them out. I replied to the Cartesian, identifying that his argument was as much of a cheat as him, and said: they are occult qualities to you, to Martin, and to all others who, not having studied them, ignore them completely, and because they appear occult to the ignorant, it does not follow that they do not exist, and they are evident qualities to those of us who have studied them, and we are not in error, since we point them out in our almanacs.

Villaroel insists on replying to the criticisms by pointing out Martinez’s supposed ignorance, and instead of supporting his argument with data, he focuses on quoting authors that recommend the study of astrology to insist that Martinez is not only ignorant, but also a terrible physician. Villaroel refers to passages from the work of Galen, Avicenna, and Hippocrates, where they all comment on the necessity of the study of astrology for the proper exercise of medicine. But other than the quotes, Villaroel’s claims are not backed up by observation and experience, despite his claims that such is the source of the astrologer’s knowledge.

This debate between Villaroel and Martinez has an interesting feature: it shows that there was more to the experimental/speculative divide than mere rhetoric. Both our authors use the rhetoric of the new philosophy, placing experience and observation as the only true source of knowledge; but while Martinez does refer to observational data to back up his explanations, Villaroel does not go beyond the authority of scholastic figures and their texts.  What we have here is a clear case of the two sides in the ESD, where the experimental methodology supported by Martinez is contrasted with the speculative ways of Villaroel. Stay tuned for further posts on the ESD in early modern Spain!!

What drives philosophical progress?

Kirsten Walsh and guest blogger Adrian Currie write…

A while ago, Peter Anstey argued that, while the traditional rationalist-empiricist distinction (RED) is primarily about epistemology, questioning the foundational sources of knowledge, evidence and justification from an a priori, first-person perspective, the experimental-speculative distinction (ESD) is primarily methodological, concerned with how knowledge is generated. In this highly speculative post, we consider a consequence of preferring one of these distinctions over the other, namely, its effect on our understanding of philosophical progress in the early modern period.  Note that the ESD is just one way of providing a methodological (as opposed to epistemological) narrative about the history of ideas, and we think much of what we have to say is perfectly compatible with those who, for instance, take a non-traditional (specifically, methodological or technological) stance on empiricism (see, for instance, Newton and Empiricism).

We suspect that the RED and the ESD give very different answers to questions about what the main driver of change in early modern philosophy was. Insofar as the RED gives us an account of what mattered in early modern philosophy, it generates stories about foundational, a priori investigation into the nature of knowledge. In contrast, the ESD tells a story of philosophical progress driven by scientific achievement, technological development and methodological innovation. These are two very different narratives about the history of ideas. Moreover, they emphasise the contributions of different historical figures.

When the focus is epistemology, we fixate on theorists who provided accounts of knowledge and its justification—namely, the canonical seven: Descartes, Leibniz, Spinoza, Locke, Berkeley, Hume and Kant—to the exclusion of other historical figures. The early Royal Society, for instance, clearly influenced the direction of Western thought, i.e. Western philosophical thought, enormously. Yet its members are sidelined in favor of epistemologists.

The ESD’s methodological emphasis shifts our focus. Boyle, Hooke and Newton, for example, did not produce new theories of knowledge, but they made strides in terms of methodology. Their inquiries yielded original ideas about how to produce knowledge and utilise new technologies (e.g. experimental apparatuses and mathematics). On this view, Newton made an enormous contribution to (anachronistically) philosophy as well as science. Newton synthesized Baconian experimental philosophy with the mathematical rigour of geometric methods—as we have argued on this blog, this methodology was influential beyond natural philosophy. Newton didn’t tell us what it is to know, but he did tell us how to go about generating knowledge. On the RED, scientific advancement is at best a side-show, on the ESD it is (to misquote Newton) the main business of philosophy.

This bit of speculation raises some questions.

Firstly, presumably it is a mistake to think that any one factor has played a privileged role in shaping history, intellectual or otherwise. Thus, arguing that the history of ideas is methodology-driven, rather than epistemology-driven, creates far too stark a dichotomy. If our speculation holds water, then the upshot is that the role of epistemology is over-emphasized. But how much, and how might we go about attributing blame?

Secondly, it is not clear to what extent frameworks such as the RED and the ESD should be read as hypotheses about historical forces. We might simply interpret them as handy heuristics—giving direction to various legitimate research interests. Moreover, they might bring out narratives relevant for understanding other parts of history. For example, one might argue that the RED is important for examining how later philosophers understood and were influenced by the early moderns (something like this view is defended here). So, how should we understand the content and role of such frameworks?

Thirdly, historians these days don’t often go in for ‘grand narratives’—and with good reason. Human history is messy and, typically, simplistic, one-size-fits-all explanations are inapplicable. Moreover, it’s not clear what difference such macro-scale frameworks make at the coalface of academic history, where historians and philosophers must engage with complex ideas and even more complex individuals. Prima facie, seeing Newton as an experimental philosopher rather than an empiricist won’t affect our interpretation of query 31. It might seem that the business of academic history is far too fine-grained for those differences to matter often. So, how much do such frameworks effect the day-to-day work of philosophers and historians?

Regardless of our answer to that question, we think these grand narratives do matter. They help decide the direction of research, and what counts as a good question for serious academic history of philosophy. Moreover, they influence pedagogy: how and what we teach (see our discussion here). Finally, they might play a role in how we, as contemporary philosophers, see ourselves and our field’s development.

This thought raises a further question: what role has the RED’s historical narrative played in vindicating and perpetuating the idea that ‘core’ epistemology targets questions about the nature of knowledge and its justification from a first-person a priori perspective?

So far, these speculations have raised more questions than answers. We’d love to hear your thoughts on them.

Experimental Philosophy and Mechanical Philosophy I: The Case of Henry More and Henry Stubbe

Peter Anstey writes …

The mechanical philosophy, at least since the work of Marie Boas Hall and E. J. Dijksterhuis, has played a prominent role in the historiography of early modern natural philosophy. By contrast, experimental philosophy has been largely absent. Take, for example, Richard Westfall’s The Construction of Modern Science (Wiley, 1971). It has a whole chapter dedicated to the mechanical philosophy whereas the term ‘experimental philosophy’ appears only once in the entire book –– on the penultimate page –– and this is in a quote from Newton’s ‘General Scholium’ in a discussion of Newton’s concept of force and the term’s presence is irrelevant to Westfall’s narrative. It is also rather telling that the term ‘experimental philosophy’ does not even appear in the 662 pages of Floris Cohen’s The Scientific Revolution: A Historiographical Inquiry (Chicago, 1994).

It is interesting to reflect, therefore, that the English terms ‘experimental philosophy’ and ‘mechanical philosophy’ came into common use around about the same time, in the late 1650s. Moreover, when the new experimental philosophy emerged in England in the 1660s it was frequently associated with and even conflated with the mechanical philosophy. (Experimental philosophy was also commonly identified with corpuscular philosophy, though this is not our concern here.) Robert Hooke famously spoke of ‘the real, the mechanical, the experimental Philosophy’ in the Preface to Micrographia of 1665. By the end of the seventeenth century, however, the two had come to be fairly clearly demarcated. The Newtonian John Keill, for instance, lists four ‘sects’ of his day, two of which are the experimental philosophers and the mechanical philosophers (Introductio ad verum physicam, Oxford, 1702, p. 2).

The process by which this ‘decoupling’ occurred is quite convoluted and this is the first in a series of posts that will attempt to set out some points of reference from which we can understand how experimental philosophy and mechanical philosophy came to be clearly demarcated.

Let us begin with two Henrys, Henry More and Henry Stubbe. More was not a practitioner of experimental philosophy: in fact, he was not a natural philosopher at all. He was, however, a Fellow of the Royal Society. Stubbe was a physician and critic of the Royal Society and experimental philosophy. Now when Henry Stubbe attacked the Royal Society, and in particular its apologist Joseph Glanvill, he claimed that Henry More had given up his association with the Society because of the Society’s commitment to the mechanical philosophy which tended to atheism (Stubbe, Legends no Histories, London, 1670, p. 173).

More responded to Stubbe’s claims in a letter to Glanvill (c. 1671):

he [Stubbe] looks upon that Mechanick Philosophy which I oppose, to be the Philosophy the Royal Society doth profess, or would support. But the Philosophy which they aim at, is a more perfect Philosophy, as yet to be raised out of faithful and skilful Experiments in Nature, which is so far from tending to Atheism, that I am confident, it will utterly rout it and the Mechanical Philosophy at once, in that sense which I oppose, namely, as it signifies a Philosophy that professeth, That Matter having such a Quantity of Motion as it has, would contribute it self into all those Phaenomena we see in Nature. (Glanvill, A Praefatory Answer to Mr Henry Stubbe, p. 155)

More opposes a mechanical philosophy that is competent to explain everything and leaves no place for a deity. But this does not mean that he opposes mechanical explanations tout court. Alluding to a passage that Stubbe quotes from Thomas Sprat’s History of the Royal-Society of London he says:

I believe indeed most of us, I am sure my self does conceive, that Generation, Corruption, Alteration and all the Vicissitudes of corporeal Nature are nothing else but Unions and Dissolutions … of little Bodies or Particles of differing Figures, Magnitudes, and Velocities. But this thus bounded is not the Mechanical Philosophy, but part of the old Pythagorick or Mosaick Philosophy … (p. 156)

More is happy to acquiesce in corpuscular explanations, so long as their limitations are recognised. He goes on:

I think it is plain, what Mechanical Philosophy that is, that may incline Men to Atheism, and that is not the experimental Philosophy, which the Royal Society professes. (p. 157)

Clearly More accepts both the corpuscular explanations of a mitigated form of mechanism and experimental philosophy. Just how he conceives the relation between the two, however, is not clear from this letter.

When we turn to Stubbe we find a similar lack of differentiation. For example, earlier in Legends no Histories, Stubbe claims that no prince has ever been called great because he used ‘any knick-knacks of Experimental or Mechanical Philosophy alone’ (p. 4).

What these passages show is that for some writers the relation between mechanical philosophy and experimental philosophy was not clearly defined. They also illustrate how tempting it would be for those scholars who view the emergence of modern science through the lens of mechanism to reduce experimental philosophy to mechanical philosophy.

It may even be that part of the explanation of the relative neglect of experimental philosophy in the historiography of early modern natural philosophy is the tendency to conflate it with mechanical philosophy. In my next post I shall examine Robert Boyle’s view of the relation between mechanical and experimental philosophy.