Skip to Navigation Skip to Content Skip to Search Skip to Site Map

Monthly Archives: June 2013

Experimental philosophy in France

Peter Anstey writes…

When did the French embrace experimental philosophy? There is no doubt that the early Académie des Sciences was committed to the use of experimental methods in natural philosophy from its inception in 1666. But there is little evidence of French natural philosophers self-identifying as experimental philosophers, of the teaching of experimental philosophy or of institutional recognition of experimental philosophy before the 1730s.

In 1735 Abbé Nollet offered the first course in experimental philosophy in France and two years later he published Programme ou idée générale d’un cours de physique expérimentale which was strongly influenced by John Theophilus Desaguliers whom he had met in England around 1734. By the late 1730s, however, it is not hard to find explicit endorsements of experimental philosophy and the deployment of the experimental/speculative distinction. The reviewer of Abbé Pluche’s Spectacle de la Nature in 1739 claims that Pluche rightly prefers experimental natural philosophy to speculative (Physique spéculative à laquelle il préfére avec raison la Physique) and that experimental philosophy is ‘so à la mode today’ (qui est aujourd’hui si à la mode).

By the early 1750s experimental philosophy is part and parcel of French natural philosophy. We have discussed this before on this blog in relation to Denis Diderot, but the following nice, clear, anonymous dictionary entry reinforces the point. In the Dictionnaire philosophique ou Introduction à la connoisance de l’homme, London (?), 1751 we find the following entry under ‘Physique’:

Natural philosophy is the knowledge of causes and effects of nature. It is experimental or conjectural. Experimental natural philosophy is certain knowledge; conjectural natural philosophy is often only ingenious. The one leads us to the truth, the other leads to error.

La Physique est la connoissance des causes & des effets de la nature: elle est expérimentale, or conjecturale. La Physique expérimentale est une connoissance certaine; la Physique conjecturale n’est souvent qu’ingénieuse: l’une nous conduit à la vérité, & l’autre nous mene à l’erreur.

The parallels with our oft-cited passage from John Dunton’s student manual in 1692 are striking:

Philosophy may be consider’d under these two Heads, Natural and Moral: The first of which, by Reason of the strange Alterations that have been made in it; may be again Subdivided into Speculative and Experimental.

… we must consider, the distinction we have made of Speculative and Experimental, and, as much as possible, Exclude the first, for an indefatigable and laborious Search into Natural Experiments, they being only the Certain, Sure Method to gather a true Body of Philosophy, for the Antient Way of clapping up an entire building of Sciences, upon pure Contemplation, may make indeed an Admirable Fabrick, but the Materials are such as can promise no lasting one.

(The Young-Students-Library, London, 1692, vi–vii)

And yet the two passages are six decades apart. Why did it take so long for the French to take up experimental philosophy? Why is it, for example, that the first chair in experimental philosophy in England was the Cambridge Plumian Chair in Experimental Philosophy and Astronomy founded in 1708 and first held by Roger Cotes, whereas the first chair of experimental philosophy in France was held by Abbé Nollet who was appointed as Professeur Royal de Physique Expérimentale au College de Navarre in 1753?

Any light that our readers can shed on these questions would be most welcome.


Borrowed Terms and Innovative Concepts in Newton’s Natural Philosophy

Kirsten Walsh writes…

In my last two posts, I have discussed my alterations to the 20 theses of our project.  In this post, I’ll continue to discuss thesis 8.

In 2011, I claimed that:

    8.  The development of Newton’s method from 1672 to 1687 appears to display a shift in emphasis from experiment to mathematics.

But at the start of this year, I replaced this thesis with a new thesis 8:

    8.  In his early work, Newton’s use of the terms ‘hypothesis’ and ‘query’ are Baconian.  However, as Newton’s distinctive methodology develops, these terms take on different meanings.

In my last post, I told you that I decided to remove my original thesis 8 because the methodological differences between Newton’s early papers and Principia aren’t as great as I initially thought.  This isn’t to say that I now think that the methodology of the 1672 paper is precisely the same as the methodology displayed in Principia.  Rather, I don’t think my original thesis 8 captures what is important about these differences.

In today’s post, I’ll tell you about my new thesis 8.

On this blog, we have argued that the early members of the Royal Society adopted the new experimental philosophy in a Baconian form.  Newton initially encountered the experimental philosophy in the early- to mid-1660s through his reading of Boyle, Hooke and the Philosophical Transactions.  While he never adopted the Baconian method of natural history, other features of his early methodology resemble the Baconian approach.  For example, in Newton’s 1672 paper and the debate that followed, his use of experiment and queries, and his anti-hypothetical stance, were recognised and accepted by the Baconian experimental philosophers.  Moreover, his 1675 paper, in which he explored his hypothesis of the nature of light, was recognised by his contemporaries as an acceptable use of a hypothesis.

In Newton’s later work, however, hypotheses and queries look quite different.

Firstly, consider Newton’s Opticks.  When the Opticks was published in 1704, it contained no hypotheses, and the introduction explicitly stated that:

    “My Design in this Book is not to explain the Properties of Light by Hypotheses, but to propose and prove them by Reason and Experiments.”

Book III ended with a series of queries, which provided directions for further research, in the style of Baconian queries.  E.g.:

    “Query 2. Do not the Rays which differ in Refrangibility differ also in Flexibility…?”

However, in the 1706 and 1718 editions, Newton introduced new queries, which explore the nature of light.  E.g.:

    “Qu. 29. Are not the Rays of Light very small Bodies emitted from shining Substances?”

Like the earlier queries, these ones set out a new research program.  But they are much more speculative than was acceptable according to the Baconian method.

Now consider Newton’s Principia.  There are hypotheses in every edition of Principia, but they look nothing like Newton’s 1675 hypothesis.  In particular, they do not explore the nature of things.  For example:

    “Hypothesis 1. The centre of the system of the world is at rest.”

I have argued that the hypotheses in Principia provide a specific supportive role to theories.  These propositions are temporarily assumed in order to draw out the observational consequences of Newton’s theory of gravitation.  They are simplifying assumptions; not assumptions about the nature of gravity.

Previously, I have argued that Newton’s methodology should be seen as a three-way epistemic distinction between theories, hypotheses and queries.  I call this an ‘epistemic triad’.  I claim that Newton took these, already familiar, terms and massaged them to fit his own three-way epistemic distinction.  It is important to recognise, therefore, that the triad is a three-way epistemic division, rather than the juxtaposition of three terms of reference.  The terms ‘theory’, ‘hypothesis’ and ‘query’ are simply labels for these epistemic categories.

In fact, this is a feature of many of Newton’s innovative concepts.  He borrowed familiar terms and massaged them to fit his own needs.  I have shown that he did this with his key methodological terms: ‘theory’, ‘hypothesis’ and ‘query’.  Steffen Ducheyne has argued that Newton did this in other aspects of his methodology, such as his dual-methods of analysis and synthesis.  This suggests that Newton’s labeling and naming of things was very much post hoc.  It seems that, when discussing Newton’s methodology, we should emphasize divisions and functions over definitions.