Skip to Navigation Skip to Content Skip to Search Skip to Site Map Menu
Search

Author Archives: Miriam Sharpe

About Miriam Sharpe

Science Communicator at the Department of Biochemistry, University of Otago.

How to make life from scratch: Understanding molecules that organise themselves

300-level biochemistry student Hannah Gordon writes about the potential uses of cells that we design ourselves and the spontaneously organising molecules that we must understand before we can make artificial cells.

Can you imagine a self-assembling, low maintenance system that converts household waste into fuel to heat and power your home? Continue reading

Biochemistry – with colour! Or the day I narrowly avoided seaweed stain down my front (and found out about a really cool protein)

The red algae, Griffithsia sp.

Some time back, I was absent-mindedly striding down the particleboard-clad corridors of the Otago Biochemistry Department, when I nearly smacked right into Malcolm Rutledge, one of our excellent assistant research fellows. Luckily, I stopped just in time, because he was carrying very precious cargo. Nestled in a polystyrene box filled with ice, was a glass tube with a brilliant crimson-red liquid in it. Continue reading

Yes, viruses attack bacteria – and bacteria fight back, but not the way we thought

Lego model of a bacteriophage

Lego model of a bacteriophage (image: Pascal, Heidelberg, Germany; licensed under CC BY 2.0)

Recent insights into how bacteria defend themselves against viruses, as revealed by Otago Biochemistry scientists and their colleagues, could guide the development of new treatments for bacterial infections. Continue reading

Kiwi and moa teach us about what makes species different

Paul Gardner standing in front of moa skeletons at the Otago Museum.

Paul Gardner and moa skeletons at the Otago Museum.

The kiwi, the emu, the moa, the cassowary, the rhea, the ostrich. They’re all part of a group of flightless birds from the Southern hemisphere known as ratites, and they’re giving us some very cool lessons on how animals evolve.

Otago Biochemistry’s Dr Paul Gardner and his bioinformatic colleagues from Harvard University, the Welcome Sanger Institute, and the Universities of Texas and Toronto have been using DNA sequences from these birds to figure out how species evolve, at the DNA level.

Continue reading

How viruses that kill bacteria can help in cancer research

Electron micrograph of bacteriophage clustering around a bacterium.

Bacteriophage cluster around a bacterium, ready to hijack its resources. Image: Dr Graham Beards|Wikimedia.

Dr Adam Middleton, a researcher at Otago Biochemistry, introduces bacteriophage viruses and explains how he uses them to help with his research into molecules involved in cancer.

The bacteriophage – ‘the deadliest being on earth’ – is a virus that infects bacteria and forces the bugs to dedicate the remainder of their brief lives to generate more phage. Continue reading

New species, new information – how our native species can benefit from genomics

 

Photo of someones hand holding a New Zealand kōura by its body.

The face of nature’s stream cleaner – a kōura shows off some of the six pairs of appendages that make up their mouths, as well as their huge front claws. Image source: RNZ National

Mary Hawkes explains her work helping to make genetic resources for New Zealand’s kōura (freshwater crayfish).

New Zealand is a country with weird, wonderful, and unfortunately endangered native species that have spent millions of years evolving in a unique ecosystem. From the kākāpō to the tuatara, conservationists are now using genomic data to help preserve our natural heritage. Continue reading

Gouty arthritis – what you eat, who you are, or somewhere in between?

Artwork depicting a gouty hand with concentric circles centred around a finger joint.

Ties That Bind, an artwork depicting gout by Marion Wassenaar, detail, 2017, mixed media. Published in Junctures: The Journal for Thematic Dialogue. No 18 (2017). CC BY-NC 3.0 NZ.

What do most people think of when they hear the word gout? I used to think of a pain that old, fat, white men from the olden days suffered from. But I was wrong. Yes, gout is painful. If you have a gout attack or flare-up you will suffer pain “that feels like a thousand needles stabbing you all at once”. But it can affect anyone, of any age and any ancestry, and it’s still a problem now.

Continue reading

AI vs evolution

Artificial intelligence gets a lot of scare stories in the media at the moment. But AI is a powerful tool that can be used for good as well, especially in fields that now generate tons of data, like medicine.

One of the big challenges in modern medicine is keeping ahead of the microbes that cause infectious diseases. Can AI, in particular a small part of AI called machine learning, help us detect and stop deadly infectious diseases before they spread and become harmful epidemics? Continue reading

Plastic Honeybees

Photo of a large, plastic, toy honeybee.

Plastic honeybee (available from anwo.com).

Bees are plastic!

Well, they’re not actually made out of plastic (at least not usually), I mean the other meaning of plastic: easily shaped or moulded.

One set of genes can develop into one of a variety of slightly different bodies, depending on what environment those genes are exposed to. This plasticity is part of how an organism adapts to changes in their environment.

In other words, bees can change their bodies when something in their environment changes. And this happens without the bees changing their genes. Continue reading

Turning inflammation on, one step at a time

Hand with an inflamed middle finger.

Inflammation – the body’s reaction to a hangnail (Wikimedia Commons).

One of the amazing things your body does is to protect itself against disease. When bacteria or viruses invade your body, or you cut yourself, your white blood cells and the substances they produce will protect you, and start healing the damage. The affected area swells up and hurts. This process is called inflammation.

However, when something goes wrong and a body can’t turn off the inflammation response, or it turns on at the wrong time, inflammation can cause arthritis and other autoimmune diseases, and can even lead to cancer. Continue reading