Categories
News

2023 Hector Medal Award to Niels Kjærgaard

On November 15 The Royal Society held its Christchurch event to celebrate 2023 Research Honours. At the event Niels was awarded the Hector Medal for fundamental scientific studies on atomic collisions and light scattering using ultracold gases.

The Hector medal is an award for outstanding work in chemical, physical or mathematical and information sciences by a researcher in New Zealand, awarded annually. Niels will join a distinguished list of recipients since 1912, including Ernest Rutherford, Te Rangi Hiroa (Peter H. Buck), John Newton Dodd, Roy Patrick Kerr, Daniel Frank Walls, Paul Terence Callaghan and Richard Blaikie.

Find out more about the award at the Royal Society Media Release:

“Professor Niels Kjærgaard has been awarded the Hector Medal by Royal Society Te Apārangi for his outstanding contribution to the advancement of scientific understanding of fundamental particles, through experimental studies of atomic collisions and light-scattering using ultracold gases.”

Congratulations Niels!

Find out more about the research, visit the website for Kjærgaard Lab.

Categories
News

Promotions 2023

Congratulations to Annika Seppälä, Jono Squire, and Paul Muir on your successful promotions in 2023!

Categories
Media Events Seminars

2023 Dan Walls Medal Public Lecture: Maths powers black holes, the Universe and everything

Prof. David Wiltshire

University of Canterbury

Sixty years ago New Zealander Roy Kerr helped revolutionize physics, achieving what had eluded scientists for 47 years. He discovered the solution to Einstein’s equations defining space around a rotating star or black hole. He combined advanced mathematics with one key simplifying insight: All bodies collapsing under their own gravity inevitably rotate faster.

The Kerr solution became the basis for revolutions first in fundamental physics in the 1960s, in astronomy in the 1970–80s, and in cosmology in the 1990s and beyond. The discoveries of gravitational waves from colliding black holes, first in 2015, and then from colliding neutron stars in 2017, mean that decades of further scientific revolutions are just beginning.

Categories
News

Transient Array Radio Telescope to be adopted by Square Kilometre Array

What started as an idea in 2014 by Dr Tim Molteno to develop the world’s smallest radio telescope in his Department of Physics laboratory at the University of Otago, is now being rolled out across eight partner nations of the Square Kilometre Array project in Southern Africa! The open-source, low-cost radio telescope called the ‘Transient Array Radio Telescope’ has been chosen by the South African Radio Astronomy Observatory as the ideal technology to build radio astronomy capacity on the continent.

Categories
Seminars

History of the Master Equation

Crispin Gardiner

Honorary Professor, University of Otago

Master equations, both classical and quantum, have been in use since at least 1910 as the basis for the description of random events in physics, and my career in Quantum Optics since the 1970s has been built on the foundation of the master equation description of quantum optics.

But why is it called the master equation, and who is responsible for its development into one of the major tools in the physics of randomness?  And how far can we trust the master equation?

I will track back the origin of the idea, and its importance in physics to the very beginning, with some unexpected results. I will cover kinetic theory, quantum optics, and the mathematics of stochastic processes, both quantum and classical up to the end of the 20th century.  At the same time, I will give some particular attention to the conditions necessary for the validity of the Master Equation.

Wednesday 8 November, 3.00pm
Room 314, Science III Building

 

Categories
Seminars

An introduction to the physics of magnetic confinement fusion

Dr Toby Adkins

Post Doctoral Fellow, University of Otago

The ultimate goal of the global fusion programme is to harness a self-sustained nuclear fusion reaction as a commercially viable source of clean energy. At the high pressures required for nuclear fusion, the fuel becomes a plasma – an electromagnetically interacting gas of charged electrons and ions – which is unable to be contained by normal materials. Magnetic-confinement fusion proposes to use large external electromagnetic coils to generate a series of nested magnetic field “surfaces” that wrap around the device and help confine the plasma. In this talk, I will introduce the general concepts underlying magnetic-confinement fusion and review some of the fundamental physics challenges it faces, including magnetohydrodynamical stability, Neoclassical transport, and microscale turbulence. Within the latter strand, I show that the scaling of the turbulent heat flux with parameters of the plasma equilibrium can be constrained by an underlying symmetry (scale invariance) of the governing equations, a prediction that is borne out by numerical simulations. Finally, I will discuss the outlook of the global nuclear fusion programme in an effort to convince you that fusion is much closer than “thirty vears away”. This talk is appropriate for anyone with a basic physics background.

Friday 13th October, 12.00pm,
Room 314, Science III Building

 

Categories
News

Introduction to Astronomy (ASTR101)

We’re excited to share that we’ve moved the long-running physics paper “Introduction to Astronomy” from summer school to semester 2 for 2024. The paper, now coded ASTR 101 Introduction to Astronomy, covers the history and cutting edge of astronomy and astrophysics, including ancient astronomy and indigenous knowledge, the birth and death of stars, planetary systems, galaxies and cosmology, and searches for extraterrestrial life.

The paper is designed to be accessible to anyone, including non-science majors, and involves almost no maths. We hope that this move into semester 2 will make it more accessible for interested students to learn about the wonders of the Universe!

Jono Squire, Craig Rodger

Categories
News

2023 Energy Education Trust Scholarships

May Robertson (BSc 3rd year)
Heloise Hildreth (BSc 3rd year)

Congratulations to the two Otago Energy students for their success in this year’s Energy Education Trust Undergraduate Scholarship round!

The EETNZ Scholarships are available to students in year three or four pursuing a full-time bachelor’s degree in science, economics or engineering and related fields but with an interest in energy as it relates to the specific needs of Aotearoa New Zealand. More information can be found at www.eetnz.org.nz.

 

 

 

Categories
Seminars

Ocean and atmosphere effects on sea ice in McMurdo Sound

Dr Maren Richter

Department of Physics University of Otago

Each winter the ocean in McMurdo Sound, Antarctica freezes to form sea ice. I will present results from my PhD studying the effect of atmosphere and ocean on the thickness of landfast sea-ice. Measurements were taken between 1986–2022 which provided a baseline against which I examined the variation in landfast sea-ice thickness between years. I will highlight the atmosphere and ocean properties most likely to influence landfast sea-ice thickness in McMurdo Sound. There is no main driver of fast-ice thickness in McMurdo Sound, but I found that in years when the air is colder, (southerly) wind speed is higher, and there are less southerly storms, the landfast sea ice is thicker. There remains a need for a future event-based analysis, especially around extreme storm events driving winter landfast sea- ice break up and persistence. The talk will give a general overview of Antarctic sea ice and McMurdo Sound in particular, as well as fieldwork undertaken during my PhD.

12.00pm, Wednesday 23 August 2023
Room 314, Science III Building

Categories
Media Events

Hydrogen trucking with Energy graduate Yoyo Wu

Otago BAppSc(Energy) graduate Yoyo Wu working on hydrogen trucking at HW Richardson talks about their first hydrogen conversion!

This link provides the full interview.