Categories
Seminars

An introduction to the physics of magnetic confinement fusion

Dr Toby Adkins

Post Doctoral Fellow, University of Otago

The ultimate goal of the global fusion programme is to harness a self-sustained nuclear fusion reaction as a commercially viable source of clean energy. At the high pressures required for nuclear fusion, the fuel becomes a plasma – an electromagnetically interacting gas of charged electrons and ions – which is unable to be contained by normal materials. Magnetic-confinement fusion proposes to use large external electromagnetic coils to generate a series of nested magnetic field “surfaces” that wrap around the device and help confine the plasma. In this talk, I will introduce the general concepts underlying magnetic-confinement fusion and review some of the fundamental physics challenges it faces, including magnetohydrodynamical stability, Neoclassical transport, and microscale turbulence. Within the latter strand, I show that the scaling of the turbulent heat flux with parameters of the plasma equilibrium can be constrained by an underlying symmetry (scale invariance) of the governing equations, a prediction that is borne out by numerical simulations. Finally, I will discuss the outlook of the global nuclear fusion programme in an effort to convince you that fusion is much closer than “thirty vears away”. This talk is appropriate for anyone with a basic physics background.

Friday 13th October, 12.00pm,
Room 314, Science III Building

 

Leave a Reply

Your email address will not be published. Required fields are marked *