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Karate chop

The physics of tameshiwari

by A. Biryukov

AMESHIWARI IS A KARATE

term that means the testing of

one’s psychological training and

of the skill to strike various ob-
jects with the hand. Karate came to
the western world from Okinawa,
Japan. It was developed in the six-
teenth and seventeenth centuries,
when in fear of rebellions, the govern-
ing powers confiscated all weapons
from the people, including their ritual
and kitchen knives. It was beyond the
power of the peasants to fight the
armed-to-the-teeth Samurais with
bare hands, but they could repel a
gang of bandits using karate.

Perhaps this explains the origin of
tameshiwari, which is always inter-
esting for spectators and produces
the impression of a miracle upon the
uninitiated. Today the skill of
tameshiwari is most often shown in
demonstrations and competitions of
karate, where the targets are planks
of certain sizes made of coniferous
(soft) wood.

We consider in this article a
simple physical model of a hand hit-
ting a plank, which yields some es-
timates and advice, and evaluates
the possible limits of athletic
achievements in tameshiwari. To
find a number of parameters for this
model, we must solve several pre-
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liminary problems, which are inter-
esting in themselves. However, to
keep our train of thought running on
the main line, we solve these prob-
lems in the appendixes at the end of
the article.

Let a blow be struck with a fist of
mass m arriving with speed v at the
center of a plank of dimensions d, ],
and h that lies on two supports (fig.
1). The fibers of the wood arc paral-
lel to the supports, which are sepa-
rated by approximately the length of
the plank 1. One of the “secrets” of
karate says that to enhance the ef-
fectiveness of the blow, one should
apply force F to the accelerated fist
just before the moment of contact
and maintain it during the entire
collision. We consider the deforma-
tion of the plank in the reference
system shown in fig. 2. Let x, be the
displacement of the plank’s center
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Figure 1
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from its cquilibrium position. As-
sume that the breaking of the plank
(signaled by the breaking of its sur-
face] occurs at some critical value x,
= x,, when the stress ¢ (the force ap-
plied to a unit area of the plank’s
cross-scction) at the plank’s surface
reaches some critical value o,
which depends on the strength of
the material.

First we find the relationship be-
tween x, and o, which is deter-
mined by the elastic properties and
geometry of the plank. The maxi-
mum bending and the maximum
stress at the surface of the plank will
take place at its center. In Appendix
1 we show that this stress is given by
the formula

Yh
c=—,
2R

where R is the radius of curvature of
the central line CC in the middle of
the plank (fig. 2} and Y is Young’'s
modulus for the type of wood.
Now we assume a particular
shape for the deformed plank and
take into consideration that its ends
are fixed at the points y = £1/2, and
the maximum displacement from
equilibrium occurs at the center of
the plank. Note that the exact shape
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Figure 2

of the plank depends on the specific
(and quite clearly understood) condi-
tions of the interaction between the
contact surface of the fist with the
plank (in a correct blow, contact is
made with the knuckles of the
middle and index fingers}. In our
calculations we will use a practical
formula based on experimental data,
which makes it possible to obtain
simple estimates.

Let’s approximate the bending of
the plank by a cosine between the
points vy = +1/2. In this case, the dis-
placement x of any point along the
central line depends on its coordi-

nate y as
Tcy]
1)

Appendix 2 shows that the corre-
sponding radius of curvature at the
plank’s center will be

2
R= (i] 1
T) X
Plugging this into the formula for o
yields the stress on the surface of the

plank at its middle when the plank’s
center is displaced by x:

x(y)= %o cos(

xYhn*
o=——,
212
This formula shows that break-

ing (o = ¢, occurs when the plank’s
center is shifted by

20,1
n’Yh

r

Now we model the elastic proper-
ties of the plank with a spring with a
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spring constant k, which is loaded by
an external force. This spring con-
stant is found in Appendix 3 to be

k= ntyhid
373

Having determined the necessary
parameters, we return to the initial
dynamic problem of a fist hitting a
plank. The motion of the fist is de-
scribed by Newton’s second law:

mx” =-kx + F,

where x henceforth means the dis-
placement of the fist from the initial
contact position with the plank, and
the primes indicate differentiation
with respect to time.

To simplify, we consider the force
F, which is applied to the fist by the
arm, to be constant. Substitutions
yield the following solution:

. F
x =Acosot + Bsm(ot+I,

which includes two arbitrary con-
stants A and B. To find them, we
specify the initial conditions: x = 0
and x” = vat t = 0. Now we get

f

v .
x =—(l-coswt)+—sinwt,
2 ®
)

where f = F/m has dimensions of
acceleration, and o= \,"% is the
frequency of natural oscillation of
the fist under the action of the elas-
tic force of the plank.

The next step is to find the maxi-
mum displacement x_ of the fist
for the given initial speed v and force
F. By equating the time derivative of
x to zero with the subsequent elimi-
nation of t, we get

| 2
f | ve )
X =1+ 1+ —1 |
ma (,02 \', [f)

To obtain the conditions of break-
ing, this displacement must bec set
equal to x,, which yields the equa-
tion

v
n-Yh’v-dm

26, h*d |
=1+ 1+ 53
3F1 y 3F%

!

connecting the properties of wood
and the geometry of the plank with
the parameters of the collision.

We solve this equation for F,
again using the parameters x_and k:

kx, mv?

2 2x

r

For the plank to break, this force
must be applied at the moment of
contact to the fist moving with ini-
tial speed v. We can see that if the
speed of the fist is large enough, the
value of F becomes negative, so no
force is needed to break the plank
with a moving fist (in a similar way
we need not apply force to a hammer
when driving a small nail into
wood). In this case the initial speed
of the fist must be larger than

26, |Ihd
VEXO=—"=—
m’3\mY

which is proportional to the square
root of the plank’s thickness h. By
contrast, if the initial speed of the
fist is zero, then this formula shows
that to break the plank, the force
must be no less than

o kx, h’c,d

T2 3l

which is proportional to the square
of the plank’s thickness h. There-
fore, to break a thicker plank, it is
more practical to increase the speed
of the blow, not its force.

Now let’s solve the equation that
determines the condition of the
plank’s breaking relative to its
thickness h. It yields the thickness
of the plank that can be broken for
the given parameters of the blow:

25,2 o
LI A ] SR
8c,1d \

64FPcld
3nty2vim? |

Let’s obtain some estimates, us-
ing the following experimental pa-
ramcters for the wood: E = 10% N/m?
and ¢, = 5 - 10° N/m?. The standard
plank in tameshiwari has a width of
20 cm and a length of 30 cm. We as-
sume ] = 25 cm, because the ends of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.




h=60cm

g 2 46 810 v(m/s|

Figure 3

the plank (located beyond the sup-
ports) can be neglected. The mass of
the fist is assumed to be 1 kg, and
this number takes into account the
forearm as well. Figure 3 shows the
dependence of the force F on the ini-
tial speed v for various thicknesses
h of the plank. If the combination of
F and v corresponds to a point lying
above the curve for a specified value
of h, the plank will break.

Now we can evaluate the thick-
ness of the plank that can be broken
by a man. The force developed by
the hand of a typical man is
F = 250 N. Figure 3 shows that at
v = 0 a typical man cannot break
even a rather thin plank with a
thickness of only 1.5 cm. To per-
form this deed, he must apply a force
of about 300 N.

The experimental value for the
maximum speed of the fist is about
10 m/s. Plugging v = 10 m/s and
F =250 N into the formula for A, we
get the thickness of the plank:
h = 6 cm. This value is rather large,
and perhaps only experienced karate
masters with excellent striking tech-
nique and psychological training can
break such a thick plank. However,
inquisitive readers can try to break a
plank with a thickness of 2 cm, be-
cause the neccessary values of force
and speed can be achieved by the
average person. In this process it is
very important to follow the basic
psychological “secret” of karate:
Never doubt yourself.

Appendix 1

Let’s find the stress on the surface
of the plank. We consider two sym-
metrical cross-sections AB and A’B’
(fig. 2), which are normal to the line
CC and separated by a small distance

I, along this line. Consider the ele-
ment AA’B’'B. Due to its small value,
we can approximate the curves AA’,
NN, and BB’ by arcs with centers ly-
ing on the so-called axis of bending
(¥, which is perpendicular to the
page. The outer surface of the plank
between points A and A’ is stretched,
while the inner surface between
points B and B’ is compressed. When
bending is absent, the lengths of
curves AA’ and BB’ are the same and
equal to I {the length of the central
curve NN’}, which retains its length
during bending. Let R be the radius
of curvature of the line NN'. Then
Iy = Ra, where o is the central angle
subtending arc NN". When the plank
is not very thick—that is, when
h << R, the length of curve AA" will
be I, = {R + h/2)o, and its elongation
due to bending will be Al =1, -, =
ho/2. According to Hooke's law, the
stress in the outer surface of the
plank is

Al Yh

Iy 2R’

Anpendix 2

Let’s find the radius of curvature
of the surface of a bent plank at the
middle point (v = 0. Recall that if R
is the radius of curvature of any
curve at a specified point, then the
circle of radius R that passes through
this point and whose center lies on
the perpendicular to the curve at
this point coincides (according to
the definition of the radius of curva-
ture) with the curve within a small
distance of this point. When Iny/Il <<
1, the function x(y) becomes

2
x(y) =xg —X—Z"[ﬂ y?

Here we used the well-known
approximation cos y=1 - y/2 for
vl << 1.

The circle of radius R and center
O’ (fig. 2), which passes through the
point (x,, 0) and which was consid-
ered in Appendix 1, is described by
the equation

y2+(X_X()"‘R)2=RZ;

which can be easily solved to find
the displacement x(y):

2

x(v) = xg —R+R\f’l—(%] .

Using another approximate for-
mula, \1-y =1-vy/2forlyl<< 1, we
get the following formula, which is
correct for ly/Rl << 1:

v’
x(v)=xy —2=.
(v)=x0 IR
By comparing the two formulas
for x{y), we get the radius of curva-
ture:

Appendix 3

Let’s find the dependence of the
displacement x, of the center of a
plank resting on two supports upon
the external force F, which is distrib-
uted along the central fibers and di-
rected downward. The mass of the
plank will be neglected.

Due to the assumed symmetry,
the force F is evenly distributed be-
tween the supports. We look at the
cross-section through the plank at
the plank’s center (fig. 2) and con-
sider the equilibrium condition for
the left half of the plank. It is af-
fected on the right by the external
torce F/2, which is applied near the
edge and directed downward. This
torce is counterbalanced by the nor-
mal force of the left support. We can
see that the sum of the torques rela-
tive to the plank’s center will be de-
termined only by the torque due to
the left support:

FI
T=—.
4

On the other hand, this torque
is counterbalanced by the torques
due to the tension and compres-
sion applied by the plank’s right
half on its left half in the plane of
the cross-section. This torque can
be derived from the formula for o
by modifying it to calculate the
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stress in the bulk of the plank
along the y-axis. As follows from
the derivation of this formula [Ap-
pendix 1), we must replace the dis-
placement h/2 from line NN’ cor-
responding to the point on the
outer surface of the plank with the
distance & from this line
(-h/2 < & < h/2). In this case the
stress in the bulk of plank will be

The total torque due to the elas-
tic tension and compression forces
relative to the plank’s center will
thus be equal to

Yh3d
12R

hi2 y h/2
T= j&;dd@:-d jaldaz
—h/2 R -hi2

By plugging the value for the ra-
dius of curvature into this equation
and equating the right-hand terms of
the two formulas for 1, we get the
relationship between the force Fand

the displacement x;;:

o . 3FF
07 yRid’

This formula can be rewritten in
the form F = kx,, from which the
formula for the spring constant k of
the equivalent spring immediately
follows:

2773

k= n“Yh°d . @
38
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