©The Royal Society/Richard Valencia.

James Bradley’s Lectures on Experimental Philosophy

Monday, September 1st, 2014 | Peter Anstey | No Comments

Peter Anstey writes …

In my last post I discussed the astronomer James Bradley who taught experimental philosophy in Oxford from 1729 until 1760. Since then I have examined Bradley’s extant lectures in the Bodleian Library, Oxford.

One of the most interesting features of the lectures is the manner in which the distinction between experimental and speculative philosophy is presented at the very beginning of his opening lecture. Bradley commences with a general reference to the laws of nature:

/1/ … these are no otherwise to be discovered than by experiments & observation & examining the Phaenomena & finding from them by what /2/ laws their motions are ordered & regulated. which is properly the Business & scope of Natural & Experimental Philosophy. (Bodleian Library MS Bradley 1, p. 1 (Used with permission of Bodleian Libraries, University of Oxford)

This view of natural philosophy is interesting in so far as it places laws of nature and experiment to the fore in a manner that was not possible before the advent of Newton’s Principia. Bradley continues:

But then our principal endeavour must be to learn the true & real manner in which the operations of Natur are actually performd & not content ours[elves] with framing Hypoth[eses] to explain how such Phaenom[ena] may be perform’d tis on this account that Reasoning much from Hypotheses in Natural Phil[osophy] is apt to lead people into mistakes and there is no likelier a method to avoid error than having recourse to experiments & trials (Bodleian Library MS Bradley 1, p. 2 (Used with permission of Bodleian Libraries, University of Oxford)

Note here the rhetoric of experimental philosophy: the warning against ‘framing Hypotheses’ which can lead to error, and the emphasis on experiment and observation. Bradley then expresses a form of fallibilism in his claims about the epistemic status of knowledge acquired by the method of ‘experiments & trials’:

/3/ Tho this is no doubt the most likely method of coming at the truth yet even in this manner of proceeding we must not expect to meet with Proof in Natural Philosophy so absolutely convincing as in pure mathematics because the Ideas we have to do with in Mathematics are the Productions of the mind itself & therefore we may have a more full adequate knowledge of them than of those we have in natural Philosophy which being fram’d from things without us they may not be just & consequently our deductions & reasonings about these may be liable to some uncertainty & leave some scruple upon the mind. (Bodleian Library MS Bradley 1, p. 3 (Used with permission of Bodleian Libraries, University of Oxford)

Bradley is honest in his claim that one should not expect mathematical certainty in matters of experimental natural philosophy. Yet he also believes that there are measures that one can take to assure us that our inferences from experiments are secure:

In order to remove all scruple as much as possible & that the mind may assent to the conclusions drawn from facts & experiments in searching into the operations of nature Sir I. Newton lays down the following Rules of Arguing in Natural Philosophy. (Bodleian Library MS Bradley 1, p. 3 (Used with permission of Bodleian Libraries, University of Oxford)

He then summarises the four rules of philosophising that Newton first published in the second edition of the Prinicpia.

What Bradley is providing in his very first lecture is a methodological statement that reveals his conception of natural philosophy and the means by which one acquires the knowledge of nature. This is what generations of students were taught at Oxford when they enlisted in his courses in the Old Ashmolean Museum. Now there are some scholars who question the value of the experimental/speculative distinction as terms of reference for understanding early modern British natural philosophy. It is necessary, however, to ask what more it would take for the ESD to be taken seriously than a lecture on natural philosophy that was repeated at least 79 times over twenty-one years to inquisitive university students at Oxford University who were paying to be taught experimental philosophy by an eminent practitioner. This is not empty ‘method talk’, this is not the RED, the rationalism/empiricism distinction, in disguise. These are the actors’ terms of reference, and they are not in polemical writings, or in promotional puffs prefacing controversial works in natural philosophy, but in ordinary undergraduate lectures.

Categories: Ideas

Astrology and the novatores

Monday, August 4th, 2014 | Juan Manuel Gomez Paris | No Comments

Juan Gomez writes…

In one of my previous posts regarding early modern Spain I referred to Martin Martinez, a physician who was an avid promoter of the experimental method. Today I want to examine a debate he had regarding the rejection of astrology. In this blog we have provided many illustrations of the methodological statements typical of those who promoted and adopted experimental philosophy. We have shown the insistence in rejecting the work of those that rely solely on speculation, but we have not yet seen any examples of the work of speculative philosophers. The case of astrology in 1720s Spain can shed some light on the kind of speculative science rejected by experimental philosophers like Feijoo and Martinez.

Besides the comments he added supporting Feijoo’s work, Martinez wrote a whole essay (Juicio final de la astrologia (The final judgment of astrology)) rejecting astrology in 1727. He distinguished between astronomy and astrology: while in the former “the regular movement of the stars is observed…times are computed, lunar cycles determined, and eclipses are predicted”, in the latter astrologists “feign a volume (only intelligible to them) in the heavens where they find written mundane events, wars, famine, pests, shipwrecks, harvests, diseases, and all other fortunes of human life.”

In the comments he makes defending Feijoo’s work, Martinez clarifies that the problem with astrology is that it is not founded in observation and experience:

“Upon reflection, according to what reasoning, or experience, do the astrologists found their imagined influxes of the stars and planets? On what grounds do they know that Mars burns, and Saturn cools? They probably say, because Mars is red and Saturn grey: though according to this they should also say that carnations burn and quicklime cools; and if they say they experience heat coming from Mars, I do not understand how they know it comes from it, and not from another cause.”

Martinez goes on listing a number of claims astrologists make, in particular related to the effects the movement of the planets and stars, eclipses, and comets have on the health of individuals. But Martinez is directing his claims to one individual in particular, Diego de Torres Villaroel, a mathematician and astrologist who published yearly almanacs with predictions under the pseudonym “el gran Piscator de Salamanca”. Leaving the calendars aside, Torres also published an essay containing his ideas on the nature of the earth and the heavens. The text was first published in 1724 under the title Viaje fantastico del gran Piscator de Salamanca (The fantastic journey of the great Piscator of Salamanca), and then again in 1739 as Anatomia de todo lo visible e invisible (Anatomy of all that is visible and invisible). It is this book that Martinez targets, and will serve as our illustration of the kind of speculative philosophy the novatores rejected.

Torres’ essay gives an account of the structure and composition of the earth and the heavens, all this prompted by an eclipse which occurred on May 22, 1724. The explanation of the constitution of both spheres of the universe (heaven and earth) is given through a story where the great Piscator travels to the depths of the earth and then upwards to the heavens, illustrating to his fellow travellers all the details of both spheres. As is clear from various passages, Torres’ claims are never supported by observations, but only by the musings of his mind and astrological calculations. The opening lines of the dedicatory epistle highlight the speculative nature of the work:

piscator

“Hand over hand the soul, without resorting to the use of the external senses, and reason, in arms of a jobless idleness, let fantasy to its word, and running through the spaces of imagination it recited in their theatre the following story.”

Torres acknowledges that he writes from his imagination, but asserts that he reaches the same conclusions others (like Kepler, who studies “the cosmic machine”) have:

“With no other guide but my imagination, and sleeping like a log, I have completed the same journeys [as Kepler and Kircher].”

Although lines like the ones just quoted give the impression that Torres must be speaking metaphorically, it seems that his ‘discoveries’ had no other foundation that the inspiration he got from studying astrology. In the opening lines of the story, a character contrasts the method of astrologists like Torres to those who studied the eclipse by means of observation:

“How is it that you, Mr. Astrologist, in an eclipse whose nature and effects have excited the North and their less lazy Observers have been writing about, you do nothing other than note down in your Prediction the simple calculation of the time and the day?”

Torres defends himself, and convinces his companions to go on a journey through the earth and the heavens in order to understand the nature of eclipses and their effects on human events. In their journey through the earth the astrologist points out where hell and purgatory reside deep down where there is no influence of the heavenly bodies. Then they travel upwards to the heavens, where the astrologist explains the different levels, how all is made of ether, and its effects on the earth. He explains how when a comet is “of the nature of Saturn”, it “causes colds, leprosy, haemorrhoids, paralyses, and chronic diseases”; if it is dominated by Mars on the other hand, it causes “cruel dysentery, rotten fevers, delirium, haemorrhages…”

I could go on drawing on passages from Torres’ book, but the ones quoted above are enough to illustrate the opposition to astrology that the Spanish novatores insisted on. It is important to remember that figures like Feijoo and Martinez had a genuine worry regarding the influence of astrology. Unlike our present time, in the early decades of the eighteenth century astrology was still considered by many as a genuine science, and it was this (more than the almanacs) that motivated the novatores to call for a ban on astrology.

Tags: , , ,
Categories: Ideas

Colloquium: Principles in Early Modern Thought

Wednesday, July 23rd, 2014 | Kirsten Walsh | No Comments

University of Sydney

27–29 August 2014

 

Speakers:

Engraved word map by Leonhard Euler

  • Professor Peter Anstey (Sydney), ‘Principles: the Contours of a Concept’ & ‘Principles of Religion’
  • Mr Joe Campbell QC (Sydney), ‘Principles & the Development of English Equity Law’
  • Professor James Franklin (UNSW), ‘Early modern Mathematical Principles’
  • Professor Daniel Garber (Princeton), ‘Principles in Leibniz’s Philosophy’
  • Professor Michael LeBuffe (Otago), ‘Principles of Spinoza’s Philosophy’
  • Professor William R. Newman (Indiana), ‘Chymical Principles’
  • Professor Sophie Roux (ENS, Paris), ‘Principles in French Philosophy’
  • Professor Kiyoshi Shimokawa (Gakushuin, Tokyo), ‘A Conflict of Principles: Hume versus Modern Natural Lawyers’
  • Dr Alberto Vanzo (Warwick), ‘Principles in Italian Natural Philosophy’
  • Ms Kirsten Walsh (Otago and Calgary), ‘Principles in Newton’s Natural Philosophy’

 

Colloquium Sponsors:

This colloquium forms part of Professor Peter Anstey’s ARC Future Fellowship project on ‘The nature and status of principles in early modern philosophy’. It is sponsored by the School of Philosophical and Historical Inquiry and the Sydney Centre for the Foundations of Science.

 

Colloquium Organisers:

  • Professor Peter Anstey
  • Professor Stephen Gaukroger

 

Places are limited.

Click here to register

 

Program (Download PDF of the program here):

Wednesday 27 August:

9.00           Peter Anstey, ‘Principles: the Contours of a Concept’

10.30         Coffee Break

11.00         James Franklin, ‘Early modern Mathematical Principles’

12.30         Lunch

1.30           Joe Campbell, ‘Principles & the Development of English Equity Law’

3.00           Break

3.30           William Newman, ‘Chymical Principles’

5.00           End of Day

 

Thursday 28 August:

9.00           Sophie Roux, ‘Principles in French Philosophy’

10.30         Coffee Break

11.00         Kiyoshi Shimokawa, ‘Principles of Natural Jurisprudence’

12.30         Lunch

1.30           Alberto Vanzo, ‘Principles in Italian Natural Philosophy’

3.00           Break

3.30           Peter Anstey, ‘Principles of Religion’

5.00           End of Day

 

Friday 29 August:

9.00           Michael LeBuffe, ‘Principles of Spinoza’s Philosophy’

10.30         Coffee Break

11.00         Kirsten Walsh, ‘Principles in Newton’s Natural Philosophy’

12.30         Lunch

1.30           Daniel Garber, ‘Principles in Leibniz’s Philosophy’

3.00           Conclusion

7.00           Colloquium Dinner

 

Location:   Darlington Centre H07, Boardroom

Contact:    Prof Peter Anstey

Phone:       61 2 9351 2477

Email:       peter.anstey@sydney.edu.au

Register: Here

Categories: Ideas

‘Epistemic amplification’ and Newton’s laws

Monday, July 7th, 2014 | Kirsten Walsh | 4 Comments

 

Kirsten Walsh writes…

In my last post, I considered the experimental support Newton offers for his laws of motion. In the scholium to the laws, Newton argues that his laws of motion are certainly true. However, in support he only cites a handful of experiments and the agreement of other mathematicians. I suggested that the experiments discussed do support his laws, but only in limited cases. This justifies their application in Newton’s mathematical theory, but does not justify Newton’s claims to certainty. In this post, I will speculate that the laws of motion were in fact better established than Newton’s discussion suggests. I introduce the notion ‘epistemic amplification’ – suggesting that Newton’s laws gain epistemic status by virtue of their relationship to the propositions they entail. That is, by reasoning mathematically from axioms to theorems, the axioms obtained higher epistemic status, and so the reasoning process effectively amplified the epistemic status of the axioms.

I am not arguing that epistemic amplification captures Newton’s thinking. In fact, Newton explicitly stated that epistemic gain was not possible. For him, the best one could achieve was avoiding epistemic loss. (I have discussed Newton’s aims of certainty and avoiding epistemic loss here and here.) I suggest that, objectively speaking, the epistemic status of Newton’s laws increases over the course of the Principia.

To begin, recall that Newton has two projects in relation to the laws:

  1. The specification of the laws as the axioms of a mathematical system; and
  2. The justification of laws as first principles in natural philosophy.

Let’s consider the first project. In addition to the support of mathematicians and the experiments that Newton cites, it is plausible that the epistemic status of the laws increases by virtue of their success in the mathematical system: in particular, by entailing Keplerian motion. Kepler’s rules and Newton’s laws of motion have independent evidence: as we have seen, Newton’s laws are weakly established by localised experiments and the ‘agreement of mathematicians’; Kepler’s rules are established by observed planetary motion and were widely accepted by astronomers prior to the Principia. Newton’s laws entail Kepler’s rules, which boosts Newton’s justification for his laws. Moreover, Newton’s laws provide additional support for Kepler’s rules, by telling us about the forces required to produce such motions. The likelihood of the two theories is coupled: evidence for one carries over to the other. So Newton’s laws also boost the justification for Kepler’s rules. Thus, Newton achieves epistemic gain: the epistemic status of the laws, qua mathematical axioms, has increased by virtue of their relationship to Kepler’s rules.

Now let’s consider the second project – the application of the laws to natural philosophy. Again, the discussion in the scholium justifies their use, but not their certainty. I now suggest that these laws, as physical principles, gain epistemic status through confirmation of Newton’s theory. This occurs in book 3, when Newton explicitly applies his mathematical theory to natural phenomena. As I have previously discussed, the phenomena (i.e. the motions of the planets and their moons) are employed as premises in Newton’s argument for universal gravitation. However, the phenomena also support the application of the mathematical theory to the physical world: they show that the planets and their moons move in ways that approximate Keplerian motion. As we saw above, the laws of motion entail Kepler’s rules. So, since the phenomena support Kepler’s rules, they also support the laws of motion. So this is a straightforward case of theory-confirmation.

There is also scope for theory-testing in book 1. Each time Newton introduces a new factor (e.g. an extra body, or a resisting medium), the mathematical theory is tested. For instance, the contrasting versions of the harmonic rule in one-body and two-body model systems provides a test: it allows the phenomena to empirically decide between two theories, one involving singly-directed central forces, the other involving mutually-interactive central forces. Similarly, the contrasting two-body and three-body mathematical systems provide a test: they allow the phenomena to select between a theory involving pair-wise interactions and a theory involving universal mutual interaction. Moreover, in the final section of book 2, Newton shows that, unlike his theory, Cartesian vortex theory does not predict Keplerian motion. Thus, the phenomena seem to support his theory, and by extension the laws of motion, and to refute the theory of vortices. Again, the laws seem to gain support by virtue of their relationship to the propositions they entail.

To summarise, Newton claims that his laws are certainly true, but the support he gives is insufficient. Here, I have sketched an account in which Newton’s laws gain epistemic status by virtue of their relationship to the propositions they entail. ‘Epistemic amplification’ is certainly not something which Newton himself would have had truck with, but the term does seem to capture the support actually acquired by Newton’s laws in the Principia.  What do you think?

 

 

Tags: , , , ,
Categories: Ideas

An Update…

Monday, June 23rd, 2014 | Kirsten Walsh | No Comments

Hello, Readers!

On 23rd August 2010, we published our first post, presenting our research project to the world.  As ‘newbies’ to blogging, we weren’t quite sure how effective it would be.  Four years later, there is no trace of those initial doubts.  The capacity to regularly share new research has helped us to be productive, to keep abreast of each other’s work, and to grow as a team. Most of all, it has allowed us to engage with the wider community, and to receive feedback at a very early stage in our research.

In light of the project’s development, the nature of the blog will change somewhat. Our Marsden grant ended two years ago, and we have all gradually moved onto other new projects:

    Peter Anstey continues to work on early modern experimental philosophy, though he now has an additional cognate project on ‘The nature and status of principles in early modern philosophy’. He is currently an ARC Future Fellow at the University of Sydney where his principles project is based. He also continues to work on Locke, Boyle and Bacon.
    Alberto Vanzo is now a research associate at the Department of Philosophy at the University of Warwick. He is working on early modern experimental philosophy, Kant and the historiography of philosophy.
    Juan Gomez is still at the University of Otago, working as a casual lecturer and continuing his research on Early Modern Spain. He is in the process of developing an extensive research project regarding the introduction of experimental philosophy in Spain in the second half of the seventeenth century and the unique Spanish take on the methodological debate of the period.
    Kirsten Walsh is now a research associate at the University of Calgary. She continues to work on Newton’s methodology, both from a historical perspective and also relating this work to current debates in the philosophy of science.

Early modern experimental philosophy continues to be a research interest for all of us – we still have heaps to study and to blog about – so we will continue to contribute to this blog, along with the occasional guest-blogger. But in July we will start mostly to blog monthly instead of fortnightly. We value your interest in our blog, and we hope you will continue reading, commenting and criticising our research. Our posts will appear on the first Monday of every month.

We at Early Modern Experimental Philosophy thank you for your continued interest in our project.

Categories: Updates

Teaching Experimental Philosophy V: the case of James Bradley

Monday, June 9th, 2014 | Peter Anstey | No Comments

Peter Anstey writes …

James Bradley (c. 1692–1762) was one of the leading English astronomers of the eighteenth century, being appointed to the Savilian Chair in Astronomy at Oxford in 1721 on the death of John Keill, before being appointed as Astronomer Royal in 1742 on the death of Edmund Halley. He announced his discovery of the phenomenon of nutation in the movement of the Earth in 1748 and was subsequently awarded the Royal Society’s Copley Medal.

Our interest in Bradley, however, lies in his teaching of experimental philosophy at Oxford for over thirty years. We have already discussed on this blog the roles of John Keill and Jean Theophilus Desaguliers in the teaching of experimental philosophy at Oxford (and in the case of Desaguliers in London). Keill began teaching around 1700 and was succeeded by Desaguliers in 1713. After a hiatus of three or four years it seems that John Whiteside of Christ Church began to lecture on experimental philosophy (his lectures survive in Cambridge University Library) and he was replaced in 1729 by Bradley. Bradley gave a staggering 79 (at least) courses on experimental philosophy from 1729 to 1760. Thus, apart from a short break experimental philosophy was constantly taught in Oxford University for the first six decades of the eighteenth century. This was in spite of the fact that, unlike Cambridge University, there was no Chair in experimental philosophy.

Interestingly, a register of all those who attended Bradley’s lectures from April 1746 to April 1760 survives. It is reproduced as Appendix E of volume XI of Gunter’s Early Science in Oxford (Oxford, 1937) and shows the name and college affiliation of every student who attended the lectures. Each course averaged 57 students. The lectures were given in the Old Ashmolean Museum, which today is the History of Science Museum. Happily some of Bradley’s lecture notes survive in the Bodleian Library.

Since there was no Chair in experimental philosophy at Oxford, Bradley had to secure some source of income for his lectures. We know that for his last 33 courses he charged two guineas for the first lecture and one gineau for the second lecture. It must have been a handy little earner. According to the Memoirs of Bradley, thirty-one pounds had been set aside each year for a reader in experimental philosophy by convocation in 1731 from the estate of the late Bishop of Durham, Nathaniel Crewe, but Bradley didn’t see any of this money until 1749.

Bradley’s lectures were similar in content to those of Desaguliers and of Roger Cotes and William Whiston in Cambridge. The syllabus remained fairly static for sixty years. It included the laws of nature, mechanics, hydrostatics and optics. What this shows us is that the term ‘experimental philosophy’ didn’t only refer to a method of acquiring knowledge of nature, but also to the actual knowledge acquired through the application of this method. This may not seem a particularly deep historical insight, but it does reflect the success of experimental philosophy of the seventeenth century. The teaching of natural philosophy had come a very long way from its emergence in the 1660s to the time that an average of over 50 undergraduates were signing up for courses in it from 1746!

Categories: Ideas

Scholasticism and natural science in early modern Spain

Monday, May 26th, 2014 | Juan Manuel Gomez Paris | No Comments

Juan Gomez writes…

One of the most exciting tasks of my research has been to track the introduction and reception of the ESD in early modern Spain. I have illustrated the adoption and praise of the spirit of experimental philosophy in various texts by the Spanish Novatores, and I looked in a bit more detail at the work of Benito Feijoo (posts 1, 2, and 3). In spite of the insistence to abandon scholastic and Aristotelian methods and science, the progress of natural philosophy in early modern Spain lagged in comparison to the rest of Europe. In fact, the Novatores themselves recognized this lack of progress, as is clear from a letter by Feijoo which I will be sharing with you today.

In 1745 Feijoo published a collection of letters, most of them responding to a range of criticisms directed against his Teatro Critico Universal. Letter 16 in the second volume of that collection is Causas del atraso que se padece en España en orden a las Ciencias Naturales (Causes for the backwardness of Spain regarding the Natural Sciences). Feijoo gives six reasons (causes) for this backwardness, in all of them placing the blame on the scholastic philosophers and their way of thinking.

The first cause is the narrowness of most of the teachers, whom Feijoo describes as “Everlasting ignorants, set on knowing only a few things, for no other reason that they think that there is nothing else to know, aside from those few things they know.” Feijoo goes on to describe this kind of teacher, who only knows scholastic logic and metaphysics, and laughs when hearing words like ‘new philosophy’ or ‘Descartes.’ However, when asked to explain the claims of the new philosophy or those held by Descartes, they stay silent because they have no knowledge of them. (Note: experimental philosophy and new philosophy are not identical, even though the former was sometimes referred to by the latter name. For example, Descartes was commonly regarded as a new philosopher, but not so much as an experimental philosopher.)

People like the teachers described above have spread throughout Spain a disdain for ‘the new’, the second cause identified by Feijoo. They think that, since every sacred doctrine labelled ‘new’ is rejected immediately for being suspicious, the same rule applies for theories about the natural world. So they must reject the teachings of Galileo, Huygens, and Harvey, as well as all the new instruments and machines developed in the seventeenth century, holding on to their scholastic and Aristotelian science as the one true system. Feijoo comments that this attitude backfires, since rejecting anything because it has been labelled ‘new’ entails that there could never have been any progress in natural science (the Aristotelian system was also ‘new’ at some point).

But aside from rejecting the new philosophy because it is ‘suspicious’, the Spanish scholastics also reject it because all it presents is “a few useless curiosities.” (This is the third cause given by Feijoo.) What the scholastics do not realize, Feijoo tells us, is that under this criterion their theories lose against those of the modern: “Which would be more useful: to explore in the physical world the works of the Author of Nature, or to investigate through large treatises derived from the Entity of Reason, and logical and metaphysical abstractions, the fictions of human understanding?” Feijoo also contrasts between the method of learning in the confines of the classroom of the scholastic, and that of the modern, based on experiments and observations.

The fourth cause rests on the mistaken notion held by the scholastics that the new philosophy is identical to Cartesian philosophy. Feijoo comments that although Cartesian philosophy might be new philosophy, new philosophy is not Cartesian philosophy, the same way men are animals but animals are not men. Highlighting the ESD, Feijoo goes on to divide philosophy into two kinds:

“Philosophy, taken in all its extension, can be divided into Systematic and Experimental. The Systematic has many different members, e.g. Pythagoric, Platonic, Peripatetic, Parascelsistic, or Chemical, that of Campanella, that of Descartes, that of Gassendi, etc.”

Feijoo clarifies that he advocates not that the Spaniards embrace one of the former systems, but rather that they do not close their eyes to “Experimental Physics”, which:

“without regard for any system, investigates the causes through the sensible effects; and where it cannot investigate the causes, it settles for the experimental knowledge of the effects… This is the physics that reigns in Nations: the one cultivated by many distinguished Academies as soon as it emerged in France, England, Holland, Etc.”

The achievements of this experimental physics are illustrated by the discoveries regarding our knowledge of the properties of air, of fluids and mechanics, all of them unattainable by relying on the physics of the schools.

Feijoo identifies as the last two causes the mistaken idea that the new philosophy clashes with religion, and the jealousy and pride of the scholastics in Spain that prevented them from accepting the triumphs of other men of science from different European nations. I will not examine them here. Instead I want to conclude the post by pointing out that, not only there is enough evidence to confirm the presence of the ESD (at least in some form) in early modern Spain, but also that it can provide us with an interesting framework to interpret the development of natural philosophy and science in early modern Spain.

Tags: , , ,
Categories: Ideas

Workshop: The Experimental Philosophy, the Mechanical Philosophy, and the Scientific Revolution

Tuesday, May 20th, 2014 | Kirsten Walsh | No Comments

A one-day workshop at the Institute of Advanced Study, Durham University:

The Experimental Philosophy, the Mechanical Philosophy, and the Scientific Revolution

9:30am-5:30pm, Thursday 5th June 2014

 

The Scientific Revolution is often presented as involving the replacement of an Aristotelian world view by the Mechanical Philosophy. Another common theme is that central to the Scientific Revolution is a special emphasis on empirical observation and experiment as providing the basis for science, a theme often captured by the phrase ‘The Experimental Philosophy’. In the seventeenth century and thereafter, the terms ‘The Mechanical Philosophy’ and ‘The Experimental Philosophy’ were sometimes taken to be synonymous. If the Mechanical Philosophy is interpreted as an encouragement to search for explanations that appeal to mechanisms, as in the workings of a clock, then a close link with experiment seems plausible. On the other hand, if that philosophy is understood as a change in the ultimate ontology of the material world, with the replacement of Aristotelian forms by nothing other than moving corpuscles of matter possessing shape and size, then a link with experiment is less plausible. The aim of this workshop is to explore the range of theses that were involved in the Mechanical and Experimental Philosophies, and to explore the relationship between them.

 

Speakers and titles:

Prof. Alan F. Chalmers (University of Sydney) ‘Qualitative Novelty in Seventeenth-Century Science: Hydrostatics from Stevin to Pascal’.

Prof. Robert Iliffe (University of Sussex) Title to be confirmed

Prof. David M. Knight (Durham University) ‘Clockwork, Chemistry and the Scientific Revolution’.

Mr. Thomas Rossetter (Durham University) ‘No Mechanism for Miracles: John Keill vs. the World Makers’.

Dr. Sophie Weeks (University of York) ‘Experiment and Matter Theory in the Work of Francis Bacon’.

Prof. David Wootton (University of York) ‘In Defence of the Mechanical Philosophy’.

 

The workshop is open to all but there are limited places available so please email thomas.rossetter@durham.ac.uk to reserve a place.

There will be a registration fee of £10 to cover lunch and refreshments.

Categories: Events

Are Newton’s Laws Experimentally Confirmed?

Wednesday, May 14th, 2014 | Kirsten Walsh | No Comments

Kirsten Walsh writes…

Previously on this blog, I have argued that the combination of mathematics, experiment and certainty are an enduring feature of Newton’s methodology.  I have also highlighted the epistemic tension between experiment and mathematical certainty found in Newton’s work.  Today I shall examine this in relation to Newton’s ‘axioms or laws of motion’.

In the scholium to the laws, Newton argues that his laws of motion are certainly true.  In support, however, he cites a handful of experiments and the agreement of other mathematicians: surprisingly weak justification for such strong claims!  In this post, I show how Newton’s appeals to experiment justify the axioms’ inclusion in his system, but not with the certainty he claims.

Newton begins:

    “The principles I have set forth are accepted by mathematicians and confirmed by experiments of many kinds.”

Newton expands on this claim, discussing firstly, Galileo’s work on the descent of heavy bodies and the motion of projectiles, and secondly, the work conducted by Wren, Wallis and Huygens on the rules of collision and reflection of bodies.  He argues that:

  1. The laws and their corollaries have been accepted by mathematicians such as Galileo, Wren, Wallis and Huygens (the latter three were “easily the foremost geometers of the previous generation”);
  2. The laws and their corollaries have been invoked to establish several theories involving the motions of bodies; and
  3. The theories established in (2) have been confirmed by the experiments of Galileo and Wren (which, in turn confirms the truth of the laws).

These claims show us that Newton regards his laws as well-established empirical propositions.  However, Newton recognises that the experiments alone are not sufficient to establish the truth of the laws.  After all, the theories apply exactly only in ideal situations, i.e. situations involving perfectly hard bodies in a vacuum.  So Newton describes supplementary experiments that demonstrate that, once we control for air resistance and degree of elasticity, the rules for collisions hold.  He concludes:

    “And in this manner the third law of motion – insofar as it relates to impacts and reflections – is proved by this theory [i.e. the rules of collisions], which plainly agrees with experiments.”

This passage suggests that the rules of collisions support a limited version of law 3, “to any action there is always an opposite and equal reaction”, and that the rules themselves appear to hold under experimental conditions.  However, this doesn’t show that law 3 is universal: which Newton needs to establish universal gravitation.  This argument is made by showing how the principle may be extended to other cases.

Firstly, Newton extends law 3 to cases of attraction.  He considers a thought experiment in which two bodies attract one another to different degrees.  Newton argues that if law 3 does not hold between these bodies the system will constantly accelerate without any external cause, in violation of law 1, which is a statement of the principle of inertia.  Therefore, law 3 must hold.  As the principle of inertia was already accepted, this supports the application of law 3 to attraction.

Newton then demonstrates law 3’s application to various machines.  For example, he argues that two bodies suspended from opposite ends of a balance have equal downward force if their respective weights are inversely proportional to the distances between the axis of the balance and the points at which they are suspended.  And he argues that a body, suspended on a pulley, is held in place by a downward force which is equal to the downward force exerted by the body.  Newton explains that:

    “By these examples I wished only to show the wide range and the certainty of the third law of motion.”

What these examples in fact show is the explanatory power of the laws of motion – particularly law 3 – in natural philosophy.  Starting with collision, which everyone accepts, Newton expands on his cases to show how law 3 explains many different physical situations.  Why wouldn’t a magnet and an iron floating side-by-side float off together at an increasing speed?  Because, by law 3, as the magnet attracts the iron, so the iron attracts the magnet, causing them to press against one another.  Why do weights on a balance sometimes achieve equilibrium?  Because, by law 3, the downward force at one end of the balance is equal to the upward force at the other end of the balance.  These examples demonstrate law 3’s explanatory breadth.  But these examples do not give us a compelling reason to think that law 3 should be extended to gravitational attraction (which seems to require some kind of action, or attraction, at a distance).

Newton, clearly, is convinced of the strength of his laws of motion.  But this informal, discussion of the experiments he appeals to shows that he ought not be so convinced.  As I see it, Newton has two projects in relation to his laws:

1)      The specification of the laws as the axioms of a mathematical system; and

2)      The justification of laws as first principles in natural philosophy.

I suggest that the experiments discussed give strong support for the laws in limited cases.  This justifies their application in Newton’s mathematical model, but it does not justify Newton’s claims to certainty.  In modern Bayesian terms, we might say that Newton’s laws have high subjective priors.  In my next post, I shall sketch an account in which Newton’s laws gain epistemic status by virtue of their relationship to the propositions they entail.

Tags: , , , ,
Categories: Ideas

Joseph Priestley on experimental philosophy and empiricism

Monday, April 28th, 2014 | Peter Anstey | 1 Comment

Joseph Priestley Rembrandt Peale [Public domain], via Wikimedia Commons

Joseph Priestley
Rembrandt Peale [Public domain], via Wikimedia Commons

Peter Anstey writes …

Joseph Priestley is one of the most celebrated chemists of all time because of his role in the discovery of oxygen. So highly was he regarded that in 1922 the American Chemical Society named their most prestigious medal ‘The Priestley Medal’.

Priestley was born in 1733 and died in 1804. Thus, he flourished in the latter decades of the era of early modern experimental philosophy and a survey of his writings reveals that he embraced experimental philosophy. Indeed, by the late eighteenth century the experimental approach to natural philosophy was virtually without a rival in Britain. When analysing his writings on natural philosophy there is no sense that he believed that experimental philosophy needed to be defended or justified at all. To be sure, one finds the usual rhetoric of experimental philosophy, such as his comment in his Experiments and Observations relating to various Branches of Natural Philosophy (London, 1779) that:

Speculation without experiment has always been the bane of true philosophy. (Preface, vii)

Yet when one turns to his Heads of Lectures on a Course of Experimental Philosophy (London, 1794) the term ‘Experimental Philosophy’ in the title is entirely unselfconscious. He opens Lecture I with a statement of the aim of the discipline:

The object of experimental philosophy is the knowledge of nature in general, or more strictly, that of the properties of natural substances, and of the changes of those properties in different circumstances. This knowledge can only be attained by experiment, or observation. (p. 1)

He goes on to mention one of the ‘rules of philosophizing’ in this discipline: ‘to admit no more causes than are necessary to account for the effects’ (p. 3). Of course, this is Newton’s first rule of philosophizing from the second edition of the Principia and it is hardly surprising that Priestley goes on to claim that given the ‘power of gravity’ ‘we are authorized to reject the Cartesian Vortices’ (ibid.).

One might, therefore, regard Priestley’s writings as not having anything to teach us about early modern experimental philosophy. And yet there is at least one point that is worth highlighting, for, Priestley was the second person to use the term ‘empiricism’ in the title of a book in English. The first was Francis Guybon in his An Essay concerning the Growth of Empiricism; or the Encouragement of Quacks, London, 1712 which was an attack on medical quacks.

Then in 1775 Priestley published a book entitled Philosophical Empiricism: containing Remarks on a Charge of Plagiarism respecting Dr H––. He had been attacked by the Irish physician Bryan Higgins who had accused him of plagiarism and Priestley defended himself, attacking many claims in Higgins’ lectures and concluding:

These and suchlike long-exploded, and crude notions (so many of which I believe were never thrown together into the same compass since the age of Aristotle or Cartesius) are delivered in a manner and phrase so quaint, and a tone so solemn and authoritative, as gives me an idea that I cannot express otherwise than by the term Philosophical Empiricism. (p. 59)

What is interesting here is that ‘empiricism’ is used as a pejorative and is loosely associated with Descartes! This all predates the Kantian Rationalism and Empiricism distinction –– the RED. It is even tempting to claim that it shows the inappropriateness of foisting the term ‘empiricism’ in its Kantian sense on eighteenth century thinkers when it already had strong currency in eighteenth-century English with an entirely different meaning.

 

Tags: , ,
Categories: Ideas

Older Entries »
 

Any views or opinion represented in this site belong solely to the authors and do not necessarily represent those of the University of Otago. Any view or opinion represented in the comments are personal and are those of the respective commentator/contributor to this site.